Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng hàm số lượng giác và phương trình lượng giác Toán 11 Cánh Diều

Tài liệu gồm 220 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm tóm tắt kiến thức cơ bản cần nắm, phân loại và phương pháp giải bài tập chuyên đề hàm số lượng giác và phương trình lượng giác trong chương trình môn Toán 11 Cánh Diều (CD). Mục lục : BÀI 1 . GÓC LƯỢNG giác GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC LƯỢNG GIÁC 4. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 4. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 8. Dạng 1. Đơn vị đo độ và rađian 8. 1. Phương pháp 8. 2. Các ví dụ minh họa 8. Dạng 2. Biểu diễn cung lượng giác trên đường tròn lượng giác 9. 1. Phương pháp 9. 2. Các ví dụ minh họa 9. Dạng 3. Độ dài của một cung tròn 11. 1. Phương pháp giải 11. 2. Các ví dụ minh họa 11. Dạng 4. Tính giá trị của góc còn lại hoặc của một biểu thức lượng giác khi biết một giá trị lượng giác 12. 1. Phương pháp giải 12. 2. Các ví dụ minh họa 12. Dạng 5. Xác định giá trị của biểu thức chứa góc đặc biệt, góc liên quan đặc biệt và dấu của giá trị lượng giác của góc lượng giác 15. 1. Phương pháp giải 15. 2. Các ví dụ minh họa 16. Dạng 6. Chứng minh đẳng thức lượng giác, chứng minh biểu thức không phụ thuộc góc x, đơn giản biểu thức 17. 1. Phương pháp giải 17. 2. Các ví dụ minh họa 17. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 20. D. BÀI TẬP TRẮC NGHIỆM 26. BÀI 2 . CÁC PHÉP BIẾN ĐỔI LƯỢNG GIÁC 61. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 61. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 62. Dạng 1. Sử dụng công thức cộng 62. 1. Phương pháp giải 62. 2. Các ví dụ minh họa 62. Dạng 2. Sử dụng công thức nhân đôi và công thức hạ bậc 67. 1. Phương pháp 67. 2. Các ví dụ minh họa 67. Dạng 3. Công thức biến đổi tổng thành tích và tích thành tổng 71. 1. Phương pháp giải 71. 2. Các ví dụ minh họa 72. Dạng 4. bất đẳng thức lượng giác và tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác 76. 1. Phương pháp giải 76. 2. Các ví dụ điển hình 77. Dạng 5. chứng minh đẳng thức, bất đẳng thức trong tam giác 79. 1. Phương pháp giải 79. 2. Các ví dụ minh họa 79. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 87. D. BÀI TẬP TRẮC NGHIỆM 92. BÀI 3 . HÀM SỐ LƯỢNG GIÁC VÀ ĐỒ THỊ 121. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 121. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP LỜI GIẢI BÀI TẬP 125. Dạng 1. Tìm tập xác đinh của hàm số 125. 1. Phương pháp 125. 2. Các ví dụ mẫu 126. Dạng 2. Xét tính chẵn lẻ của hàm số 127. 1. Phương pháp 127. 2. Các ví dụ mẫu 128. Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác 130. 1. Phương pháp 130. 2. Ví dụ mẫu 131. Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó 134. 1. Phương pháp 134. 2. Ví dụ mẫu 135. Dạng 5. Đồ thị của hàm số lượng giác 136. 1. Phương pháp 136. 2. Các ví dụ mẫu 137. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 140. D. BÀI TẬP TRẮC NGHIỆM 149. BÀI 4 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN 178. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 178. B. CÁC VÍ DỤ RÈN LUYỆN KĨ NĂNG 180. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 184. D. BÀI TẬP TRẮC NGHIỆM 191. BÀI TẬP CUỐI CHƯƠNG 1 201. PHẦN 1. GIẢI BÀI TẬP SÁCH GIÁO KHOA 201. PHẦN 2. BÀI TẬP THÊM 209.

Nguồn: toanmath.com

Đọc Sách

Sử dụng máy tính cầm tay giải nhanh trắc nghiệm lượng giác - Trần Anh Khoa
Tài liệu gồm 25 trang của tác giả Trần Anh Khoa trình bày phương pháp sử dụng máy tính cầm tay Casio – Vinacal giải nhanh trắc nghiệm lượng giác Toán 11. Nội dung tài liệu : Phần I. Sử dụng máy tính cầm tay trong các bài toán góc và cung lượng giác Phần II. Sử dụng chức năng calc của máy tính cầm tay để kiểm tra các đáp án + Dạng toán 1. Kiểm tra một giá trị là nghiệm của phương trình + Dạng toán 2. Kiểm tra một họ là nghiệm của phương trình + Dạng toán 3. Kiểm tra một tập là txđ của hàm số lượng giác Phần III. Sử dụng máy tính cầm tay hỗ trợ giải phương trình bậc nhất đối với sinx và cosx [ads] Phần IV. Sử dụng chức năng table của máy tính cầm tay + Dạng toán 1. Tìm gtnn và gtln của hàm số lượng giác + Dạng toán 2. Tìm chu kì tuần hoàn của hàm số lượng giác + Dạng toán 3. Xét tính đồng biến, nghịch biến của hàm số lượng giác + Dạng toán 4. Tìm nghiệm và số nghiệm của phương trình lượng giác trong một khoảng cho trước Bài tập củng cố: chuyên đề sử dụng máy tính cầm tay giải nhanh trắc nghiệm lượng giác Khi mà hình thức thi trắc nghiệm “lên ngôi”, cộng với việc nội dung Toán 11 sẽ xuất hiện trong đề thi THPT Quốc gia (đã có trong các đề thi thử môn Toán 2018), thì việc giải nhanh trắc nghiệm lượng giác bằng máy tính Casio là một kỹ năng cần thiết không chỉ đối với học sinh 11 và còn cả với những học sinh lớp 12 và ôn thi THPT.
Chuyên đề hàm số lượng giác và phương trình lượng giác - Nguyễn Bảo Vương
Chuyên đề hàm số lượng giác và phương trình lượng giác 2018 của thầy Nguyễn Bảo Vương gồm 58 trang, với tóm tắt lý thuyết, phân dạng, phương pháp giải, bài tập trắc nghiệm có đáp án và các thủ thuật sử dụng máy tính Casio trong giải Toán lượng giác lớp 11. Nội dung tài liệu: Bài 1. HÀM SỐ LƯỢNG GIÁC + Dạng toán 1. Tìm tập xác định của hàm số lượng giác + Dạng toán 2. Xác định tính chẵn, lẽ của của hàm số lượng giác + Dạng toán 3. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác + Dạng toán 4. Tìm chu kỳ của hàm số lượng giác + Dạng toán 5. Xác định của hàm số lượng giác có đồ thị cho trước Bài 2. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN [ads] Bài 3. PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP + Dạng toán 1. Phương trình lượng giác thường gặp đối với sinx và cosx + Dạng toán 2. Phương trình bậc hai đối với một hàm số lượng giác + Dạng toán 3. Phương trình thuần nhất (đẳng cấp) đối với sinx và cosx + Dạng toán 4. Phương trình đối xứng đối với sinx và cosx + Dạng toán 5. Phương trình đối xứng đối với tanx và cotx Bài tập trắc nghiệm ôn tập
Hướng dẫn giải các dạng toán hàm số lượng giác - Lê Đức Thiệu
Tài liệu gồm 44 trang tuyển tập các dạng toán, phương pháp giải và bài tập chủ đề hàm số lượng giác + 4 cấp độ Nhận biết – Thông hiểu – Vận dụng – Vận dụng cao trong từng vấn đề + Bao phủ các dạng bài có thể xuất hiện trong các bài kiểm tra, các đề thi + Đa dạng cách hỏi (khó sử dụng casio để thử trong các bài toán hay & khó) + Có kết hợp sử dụng Casio giải nhanh
Chuyên đề hàm số lượng giác và phương trình lượng giác - Võ Anh Dũng
I. CÁC HÀM SỐ LƯỢNG GIÁC + Dạng 1: Tìm tập xác định của hàm số + Dạng 2: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác + Dạng 3: Tìm chu kỳ của hàm số lượng giác + Dạng 4: Xét tính đồng biến, nghịch biến của hàm số lượng giác II. PHƯƠNG TRÌNH LƯỢNG GIÁC [ads] 1. Phương trình lượng giác cơ bản 2. Phương trình bậc hai đối với một hàm số lượng giác 3. Phương trình bậc nhất đối với sinx và cosx 4. Phương trình dẳng cấp bậc hai 5. Phương trình đối xứng III. BÀI TẬP TRẮC NGHIỆM