Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh năng khiếu Toán 8 năm 2022 - 2023 phòng GDĐT Thanh Sơn - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh năng khiếu cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thanh Sơn, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm khách quan + 60% tự luận, thời gian làm bài 120 phút, không kể thời gian giao đề; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh năng khiếu Toán 8 năm 2022 – 2023 phòng GD&ĐT Thanh Sơn – Phú Thọ : + Ghi chú: Thí sinh lựa chọn đáp án phần trắc nghiệm khách quan chỉ có một lựa chọn đúng. Thí sinh làm bài thi (cả phần trắc nghiệm khách quan và phần tự luận) trên tờ giấy thi (không làm bài trên đề thi). Cho tam giác ABC, các đường trung tuyến BD và CE. Lấy M, N trên BC sao cho BM = MN = NC. Gọi I là giao điểm của AM và BD, K là giao điểm của AN và CE. Biết BC = 10cm thì độ dài IK là? + Để lập đội tuyển năng khiếu bóng rổ nhà trường đưa ra quy định tuyển chọn như sau: mỗi bạn dự tuyển sẽ được ném 10 quả bóng vào rổ, quả bóng vào rổ được cộng 4 điểm; quả bóng ném ra ngoài thì bị trừ 2 điểm. Nếu bạn nào có số điểm từ 22 điểm trở lên thì sẽ được chọn vào đội tuyển. Một học sinh muốn được chọn vào đội tuyển thì số quả bóng phải ném vào rổ ít nhất là? + Cho tam giác ABC nhọn, đường cao BE và CF cắt nhau tại H. Qua B kẻ đường thẳng song song với CF cắt tia AH tại M, AH cắt BC tại D. a) Chứng minh 2 BD AD DM. b) Kẻ AK vuông góc với EF tại K. Chứng minh ∆AEK đồng dạng ∆AHF. c) Chứng minh: AB AC BE CF AE AF.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2016 - 2017 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2017. Trích dẫn đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Cho hình vuông EFGH. Từ E, vẽ góc vuông xEy sao cho cạnh Ex cắt các đường thẳng FG và GH theo thứ tự ở M và N, còn cạnh Ey cắt hai đường thẳng trên lần lượt ở P và Q. a) Chứng minh rằng các tam giác EMQ và ENP là các tam giác vuông cân; b) Đường thẳng QM cắt NP ở R. Gọi I và K theo thứ tự là trung điểm của PN và QM. Tứ giác EKRI là hình gì? Vì sao? c) Chứng minh bốn điểm F, H, K, I thẳng hàng. + Cho biểu thức a) Rút gọn A; b) Tìm giá trị nguyên của x để A có giá trị nguyên. + Cho ba số a, b, c thỏa mãn điều kiện abc = 2017. Tính giá trị của biểu thức: P = 2 22 2017 2017 2017 2017 1.
Đề thi HSG cấp huyện Toán 8 năm 2016 - 2017 phòng GDĐT Cẩm Xuyên - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG cấp huyện Toán 8 năm 2016 – 2017 phòng GD&ĐT Cẩm Xuyên – Hà Tĩnh. Trích dẫn đề thi HSG cấp huyện Toán 8 năm 2016 – 2017 phòng GD&ĐT Cẩm Xuyên – Hà Tĩnh : + Cho hình vuông ABCD. Gọi I là một điểm nằm giữa A và B. Tia DI và tia CB cắt nhau ở K. Kẻ đường thẳng qua D vuông góc với DI. Đường thẳng này cắt đường thẳng BC tại Q. E là trung điểm của IQ, tia DE cắt BC tại F. Qua I vẽ đường thẳng song song với AD cắt DF tại H. Chứng minh rằng: a) Tứ giác IHQF là hình thoi. b) Tổng 1/DI2 + 1/DK2 không đổi khi I thay đổi trên cạnh AB. + Cho tam giác ABC vuông tại A có AB = 6cm và AC = 8cm. Gọi M là trung điểm của cạnh AB, N là trung điểm của cạnh AC. Tính độ dài đoạn thẳng MN. + Cho tam giác ABC vuông tại A, đường phân giác BD. Biết AD = 3 cm và DC = 5 cm. Tính độ dài AB và BC.
Đề thi học sinh giỏi Toán 8 năm 2016 - 2017 phòng GDĐT Gia Viễn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Gia Viễn – Ninh Bình. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Gia Viễn – Ninh Bình : + Cho hình vuông ABCD. Qua A vẽ hai đưởng thẳng d và d’ vuông góc với nhau. Biết d cắt BC và CD lần lượt tại R và S, d’ cắt BC và CD ở P và Q. a) Chứng minh các tam giác AQR và tam giác APS là các tam giác cân. b) QR cắt PS tại H. Gọi M và N lật lượt là trung điểm của QR và PS. Chứng minh tứ giác AMHN là hình chữ nhật. c) Chứng minh MN là đường trung trực của AC. + Chứng minh rằng trong một hình thang cân, bình phương của đường chéo bằng bình phương của cạnh bên cộng với tích của hai đáy. + Tìm giá trị nhỏ nhất của biểu thức: M.
Đề thi HSG Toán 8 năm 2016 - 2017 phòng GDĐT Phù Ninh - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Phù Ninh – Phú Thọ; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Phù Ninh – Phú Thọ : + Cho hình vuông ABCD, M là một điểm nằm giữa B và C. Kẻ AN vuông góc với AM, AP vuông góc với MN (N và P thuộc đường thẳng CD). 1. Chứng minh tam giác AMN vuông cân và AN2 = NC.NP. 2. Tính tỉ số chu vi tam giác CMP và chu vi hình vuông ABCD. 3. Gọi Q là giao điểm của tia AM và tia DC. Chứng minh tổng 1/AM2 + 1AQ2 không đổi khi điểm M thay đổi trên cạnh BC. + Tỉ số các cạnh bé nhất của hai tam giác đồng dạng bằng 2/5. Tính chu vi P và P’ của hai tam giác đó biết P’ – P = 18 cm. + Cho tam giác ABC có độ dài ba cạnh: AB = 20 cm, AC = 34 cm, BC = 42 cm. Diện tích của tam giác đó là?