Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 9 năm 2022 - 2023 trường THPT chuyên Lam Sơn - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào Chủ Nhật ngày 27 tháng 11 năm 2022. Trích dẫn Đề HSG Toán 9 năm 2022 – 2023 trường THPT chuyên Lam Sơn – Thanh Hóa : + Hai số nguyên dương a, b được gọi là “cân bằng” nếu hai số này có cùng tập ước nguyên tố (ví dụ hai số 10 và 20 là cân bằng vì cùng có tập ước nguyên tố là {2;5}). Tìm tất cả các số nguyên dương n sao cho n và n + 6 là hai số “cân bằng” và n chia hết cho 4. + Cho đường tròn (O;R), đường kính AB cố định. Một điểm C di chuyển trên (O) (C khác A, B). Gọi I là tâm đường tròn nội tiếp tam giác ABC. Vẽ CH vuông góc với AB tại H. 1. Vẽ CM song song với BI (M thuộc AI). Lấy điểm F thuộc AB sao cho AC = AF. Chứng minh CM vuông góc với FM. 2. Lấy điểm P trên tia đối của tia AC sao cho AP = AC. Gọi Q là trung điểm của HB, đường thẳng PH cắt CQ tại J. Chứng minh ACH = QJB. 3. Gọi K là tâm đường tròn nội tiếp tam giác AHC; đường thẳng CK cắt AB tại E. Hãy tìm vị trí điểm C trên đường tròn (O) sao cho diện tích tam giác CEF lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 9 cấp trường năm 2021 - 2022 trường THCS Hồng Bàng - Hải Phòng
Đề thi HSG Toán 9 cấp trường năm 2021 – 2022 trường THCS Hồng Bàng – Hải Phòng gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi nhằm thành lập đội tuyển học sinh giỏi môn Toán 9 cấp trường.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Đống Đa - Hà Nội
Thứ Bảy ngày 04 tháng 12 năm 2021, phòng Giáo dục và Đào tạo quận Đống Đa, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng học sinh giỏi môn Toán lớp 9 năm học 2021 – 2022. Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Đống Đa – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Đống Đa – Hà Nội : + Cho biểu thức P a) Rút gọn biểu thức P. b) Tính giá trị của P. + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Trên đoạn HC lấy điểm M sao cho HM = HA. Đường thẳng vuông góc với BC tại M cắt AC tại K. a) Chứng minh BKC đồng dạng với AMC và BK = AB. b) Gọi I là trung điểm BK. Tính số đo góc AHI. + Cho 81 điểm phân biệt nằm trong một hình vuông có cạnh bằng 1. Chứng minh rằng tồn tại 6 điểm trong các điểm đã cho nằm trong một đường tròn có bán kính bằng 1/5.
Đề thi HSG Toán 9 cấp huyện năm 2021 - 2022 phòng GDĐT Sơn Động - Bắc Giang
Đề thi HSG Toán 9 cấp huyện năm 2021 – 2022 phòng GD&ĐT Sơn Động – Bắc Giang được biên soạn theo hình thức đề thi trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 20 câu, chiếm 6,0 điểm, phần tự luận gồm 04 câu, chiếm 14,0 điểm, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 16 tháng 10 năm 2021, đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Thái Hòa - Nghệ An
Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Thái Hòa – Nghệ An gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút.