Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề vào môn Toán (chuyên) năm 2022 2023 trường chuyên Hạ Long Quảng Ninh

Nội dung Đề vào môn Toán (chuyên) năm 2022 2023 trường chuyên Hạ Long Quảng Ninh Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm 2022-2023 trường chuyên Hạ Long, Quảng Ninh Đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm 2022-2023 trường chuyên Hạ Long, Quảng Ninh Chào đón quý thầy cô giáo và các em học sinh lớp 9! Đây là đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022-2023 của trường THPT chuyên Hạ Long, tỉnh Quảng Ninh. Các bài toán trong đề thi đều được chọn lọc kỹ lưỡng để đảm bảo tính chất chuyên sâu và đòi hỏi của môn Toán chuyên. Trích dẫn đề vào lớp 10 môn Toán (chuyên) năm 2022-2023 trường chuyên Hạ Long - Quảng Ninh: 1. Chứng minh rằng với x là số nguyên bất kỳ thì 25x + 1 không thể viết được dưới dạng tích hai số nguyên liên tiếp. 2. Cho tam giác ABC có ba góc nhọn, đường cao AH. Đường tròn (O) đường kính BC cắt AB tại E (E khác B). Gọi D là một điểm trên cung nhỏ BE (D khác B và D khác E). Hai đường thẳng DC và AH cắt nhau tại G, đường thẳng EG cắt đường tròn (O) tại M (M khác E), hai đường thẳng AH và BM cắt nhau tại I, đường thẳng CI cắt đường tròn (O) tại P (P khác). a) Chứng minh tứ giác DGIP nội tiếp; b) Chứng minh GA.GI = GE.GM; c) Hai đường thẳng AD và BC cắt nhau tại N, DB và CP cắt nhau tại K. Chứng minh hai đường thẳng NK và AH song song với nhau. 3. Chứng minh rằng trong 16 số nguyên dương đôi một khác nhau nhỏ hơn 23, bao giờ cũng tìm được hai số khác nhau có tích là số chính phương. Hy vọng đề thi này sẽ giúp các em học sinh thử sức và phát huy tốt năng lực Toán học của mình. Chúc quý thầy cô và các em học sinh có kỳ thi thành công!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán (Tin) vào 10 năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán (Tin) ôn thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; đề thi dùng cho thí sinh thi vào lớp 10 chuyên Tin học; kỳ thi được diễn ra vào Chủ Nhật ngày 16 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán (Tin) vào 10 năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Cho ba điểm A B C cố định nằm trên một đường thẳng d (B nằm giữa A và C). Vẽ đường tròn tâm O thay đổi nhưng luôn đi qua B và C (O không thuộc đường thẳng d). Kẻ AM và AN là các tiếp tuyến với đường tròn tâm O (M, N là các tiếp điểm và N thuộc cung nhỏ BC). Đường thẳng AO cắt MN tại điểm H và cắt đường tròn tại các điểm P và Q (P nằm giữa A và Q). Gọi I là trung điểm của BC. + Cho 2023 hình chữ nhật có chiều rộng bằng 1 cm và chiều dài lần lượt bằng 1 x cm 2 x cm 2023 x cm. Biết rằng 1 2 2023 x x là các số nguyên dương khác 1 thỏa mãn điều kiện 1 2 2023 1 1 1 … 88 x. Chứng minh rằng trong 2023 hình chữ nhật này có ít nhất hai hình chữ nhật có diện tích bằng nhau. + Cho hai số thực a b phân biệt thỏa mãn 2 2 a a b b c 2023 2023 với c là một số thực dương. Chứng minh rằng 1 1 2023 0 a b c.
Đề khảo sát Toán (chuyên) vào 10 năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán (chuyên) ôn thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào Chủ Nhật ngày 16 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán (chuyên) vào 10 năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Cho các số thực dương x y thỏa mãn 2 x xy 3 10 và 2 y xy 6. Tính A x y 3. + Cho tam giác ABC nhọn có AB AC nội tiếp đường tròn O. Phân giác trong của BAC cắt BC tại D và cắt O tại Q Q A. Từ D dựng DE DF lần lượt vuông góc với AC AB E AC F AB. Gọi M là trung điểm của BC, tia QM cắt O tại giao điểm thứ hai là P. a) Chứng minh QM QP QD QA. b) Gọi N là giao điểm của PD và EF. Chứng minh MN song song với AD. c) Dựng đường kính AK của O. Các đường tròn ngoại tiếp các tam giác BFN và CEN cắt nhau tại điểm R R N. Chứng minh các điểm P D R thẳng hàng. + Xét một bảng ô vuông cỡ 8 8 gồm 64 ô vuông. Chứng minh với mọi cách đánh dấu 7 ô vuông của bảng, ta luôn tìm được một hình chữ nhật gồm 8 ô vuông mà không có ô nào bị đánh dấu.
Đề khảo sát Toán vào 10 năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán ôn thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; đề thi chung dành cho tất cả các thí sinh; kỳ thi được diễn ra vào Chủ Nhật ngày 16 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán vào 10 năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Cho tam giác ABC có ba góc nhọn. Hai đường cao của tam giác đó là AD, BE cắt nhau tại H với D BC E AC. 1. Chứng minh CDHE là tứ giác nội tiếp một đường tròn, tìm vị trí tâm I của đường tròn đó. 2. Chứng minh HA HD HB HE. 3. Chứng minh IE là tiếp tuyến của đường tròn ngoại tiếp tam giác BDE (với I là tâm đường tròn ngoại tiếp tứ giác CDHE). + Trong mặt phẳng tọa độ Oxy, đường thẳng d y ax b đi qua điểm M 1 2 và song song với đường thẳng 2 3 d y x. Tìm các hệ số a và b. + Cho ba số dương a b c thỏa mãn 2 2 2 a b c 9. Tìm giá trị nhỏ nhất của biểu thức a b c 2 5 P bc ca ab.
Đề tham khảo tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi tham khảo kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Tây Ninh; đề thi hình thức tự luận, gồm 01 trang với 10 bài toán, thời gian làm bài 120 phút. Trích dẫn Đề tham khảo tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Tây Ninh : + Hai lớp 9A và 9B có tổng số học sinh là 78. Trong một năm học mỗi học sinh lớp 9A đã sử dụng 3 quyển tập cho môn Toán, mỗi học sinh lớp 9B đã sử dụng 2 quyển tập cho môn Toán. Tính số học sinh của mỗi lớp, biết rằng tổng số quyển tập cho môn Toán mà hai lớp đã sử dụng trong một năm học là 194 quyển. + Cho tam giác ABC có ba góc nhọn (AB < AC) và có đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC của tam giác ABC lần lượt tại E và F. Chứng minh điểm B thuộc đường tròn ngoại tiếp tam giác EFC. + Cho hình vuông ABCD nội tiếp đường tròn (O) có đường kính bằng 5. Gọi E là điểm trên đoạn thẳng BD sao cho BE > ED, đường thẳng AE cắt (O) tại F và đường thẳng BF cắt AC tại G. Tính diện tích tứ giác ABGE.