Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Hà Tĩnh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán bậc THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra trong hai ngày: 22/09/2022 (vòng 1) và 23/09/2022 (vòng 2). Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Hà Tĩnh : + Cho trước a, b thuộc N* thỏa mãn a2 + b2 là tích của các số nguyên tố phân biệt và mỗi số nguyên tố đó đều có dạng 8k -3 với k thuộc N*. a) Giả sử tồn tại p = 8l – 3 (l thuộc N*) là một ước nguyên tố của a4 + b4. Chứng minh rằng p là ước của cả a và b. b) Tìm tất cả các cặp (m; n) với m,n thuộc Z mà am + bn và an – bm là các số chính phương. + Với mỗi cặp số nguyên dương (m; n), giả sử ban đầu có m + n hộp được đánh số từ 1 đến m + n, trong đó m hộp đầu tiên mỗi hộp chứa 1 bi đen và n hộp còn lại mỗi hộp chứa 1 bi trắng. Trong mỗi bước, ta được quyền chuyển một bi đen từ hộp i sang hộp i + 1 và một bi trắng từ hộp j sang hộp j – 1 với điều kiện i – j là một số chẵn. Ở đây giả sử rằng mỗi hộp đều đủ lớn để có thể chứa toàn bộ số bi. Cặp số (m; n) được gọi là tốt nếu sau hữu hạn bước chuyển thì n hộp đầu tiên mỗi hộp chứa 1 bi trắng và m hộp còn lại mỗi hộp chứa 1 bi đen. Nếu trái lại thì ta nói (m; n) là cặp xấu. 1) Chứng minh rằng cặp (1; 2021) là cặp xấu. b) Tìm số cặp số nguyên dương (m; n) tốt trong mỗi trường hợp một m + n = 2022 và m + n = 2023. + An và Bình đến cửa hàng mua kẹo. Trong cửa hàng có các túi kẹo loại 1 chiếc, 2 chiếc, 4 chiếc … 2^30 chiếc. Mỗi loại có nhiều túi. Mỗi bạn chọn mua một số túi ở nhiều loại và mỗi loại có thể mua nhiều túi. a) Số túi ít nhất An cần phải mua để có đúng 1000 chiếc kẹo là bao nhiêu? b) Có bao nhiêu cách chọn 5 túi kẹo đôi một khác loại sao cho tổng số chiếc kẹo được chọn không vượt quá 2023 và nếu túi loại 2^n được chọn (n thuộc N và n =< 29) thì túi loại 2^n+1 không được chọn? c) Giả sử sau khi mua, An và Bình lần lượt có n và n + 1 (n thuộc N và 0 =< n =< 2023) chiếc kẹo, đồng thời An có nhiều hơn Bình 7 túi kẹo. Có bao nhiêu giá trị n thỏa mãn các điều kiện trên, biết An và Bình luôn mua ít túi nhất có thể?

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 12 năm 2023 - 2024 sở GDĐT Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi có đáp án và hướng dẫn chấm điểm mã đề 101 – 102 – 103 – 104. Trích dẫn Đề thi chọn học sinh giỏi Toán 12 năm 2023 – 2024 sở GD&ĐT Nam Định : + Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), BAC = 90◦ và SA = BC. Gọi E, F lần lượt là hình chiếu vuông góc của A lên SB, SC; M là trung điểm của SA và G là trọng tâm của tam giác ABC. Tính tỉ số V1 V2 với V1, V2 lần lượt là thể tích của các khối tứ diện MAEF và AEF G. + Cho hình tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau và có độ dài cùng bằng 2a. Gọi E và F lần lượt là trung điểm BC, BD. Tính thể tích của khối chóp A.EF DC. + Cho đa giác đều (H) có 24 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình (H). Tính xác suất để 4 đỉnh được chọn tạo thành một hình chữ nhật không phải là hình vuông.