Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2019 2020 sở GD ĐT Bình Định

Nội dung Đề chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2019 2020 sở GD ĐT Bình Định Bản PDF Ngày 22 tháng 10 năm 2019, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2019 – 2020. Đề chọn học sinh giỏi tỉnh Toán lớp 12 năm học 2019 – 2020 sở GD&ĐT Bình Định gồm có 05 bài toán tự luận, đề thi gồm có 01 trang, thời gian làm bài 180 phút. Trích dẫn đề chọn học sinh giỏi tỉnh Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Bình Định : + Cho tam giác ABC (AC < BC) nội tiếp trong đường tròn tâm O. Phân giác góc C cắt đường tròn (O) tại R. Gọi K, L lần lượt là trung điểm của AC và BC. Đường vuông góc với AC tại K cắt CR tại P, đường vuông góc với BC tại L cắt CR tại Q. Chứng minh rằng diện tích của các hình tam giác RPK và RQL bằng nhau. + Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc. Gọi R và r lần lượt là bán kính mặt cầu ngoại tiếp và bán kính mặt cầu nội tiếp hình chóp; V là thể tích khối chóp và h là đường cao của hình chóp từ đỉnh S. Tìm giá trị lớn nhất của biểu thức V(h – r)/R^2rh. [ads] + Trên bảng kẻ ô vuông 2 × n ghi các số dương sao cho tổng của hai số trong mỗi cột bằng 1. Chứng minh rằng có thể bỏ đi một số trong mỗi cột để trên mỗi hàng các số còn lại có tổng không vượt quá (n + 1)/4. + Tìm tất cả các số nguyên tố p có dạng a^2 + b^2 + c^2 với a, b, c là các số tự nhiên sao cho a^4 + b^4 + c^4 chia hết cho p. + Cho hai đa thức P(x) và Q(x) = aP(x) + bP'(x) với a, b là các số thực và a ≠ 0. Chứng minh rằng nếu đa thức Q(x) vô nghiệm thì đa thức P(x) cũng vô nghiệm. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 - 2021 sở GDĐT Đồng Tháp
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; đề thi được biên soạn theo hình thức đề thi 100% trắc nghiệm, đề thi có đáp án và tóm tắt lời giải (lưu ý: đây là mã đề GỐC nên toàn bộ đáp án đều là A). Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Đồng Tháp : + Từ một tấm tôn hình quạt OAB có 2 120 o OA AOB người ta xác định hai điểm M N lần lượt là trung điểm của OA OB rồi cắt tấm tôn theo hình chữ nhật MNPQ (như hình vẽ). Dùng hình chữ nhật đó tạo thành mặt xung quanh của một hình trụ với đường sinh MQ NP trùng khít nhau. Khối trụ tương ứng được tạo thành có thể tích là? + Trong không gian với hệ tọa độ Oxyz, cho a(1;-1;0) và hai điểm A(−4;7;3), B(4;4;5). Hai điểm M N thay đổi thuộc mặt phẳng Oxy sao cho MN cùng hướng a và MN = 5√2. Giá trị lớn nhất của |AM – BN| bằng? + Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;1;2), B(-1;0;4), C(0;-1;3) và điểm M thuộc mặt cầu (S): x2 + y2 + (z – 1)2 = 1. Nếu biểu thức MA2 + MB2 + MC2 đạt giá trị nhỏ nhất thì độ đài đoạn AM bằng?
Đề thi học sinh giỏi Toán 12 năm 2020 - 2021 sở GDĐT tỉnh Quảng Nam
Thứ Sáu ngày 12 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kỳ thi chọn học sinh giỏi lớp 12 THPT cấp tỉnh môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT tỉnh Quảng Nam mã đề 105 gồm 04 trang với 40 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT tỉnh Quảng Nam : + Cho hình trụ có hai đáy là hai hình tròn tâm O và O’, bán kính đáy bằng 2a và chiều cao bằng 4a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn đáy tâm O’ lấy điểm B sao cho AB = 5a. Tính thể tích của khối tứ diện ABOO’. + Trong không gian Oxyz, cho hai đường thẳng d1 và d2. Mặt cầu (S) tiếp xúc với d1 tại điểm có hoành độ bằng 1 và có tâm nằm trên đường thẳng d2. Điểm nào sau đây thuộc mặt cầu (S)? + Có 6 học sinh gồm 1 học sinh lớp 10, 2 học sinh lớp 11 và 3 học sinh lớp 12. Xếp ngẫu nhiên 6 học sinh đó thành một hàng ngang. Xác suất để học sinh lớp 10 đứng xen kẽ giữa 2 học sinh lớp 12 bằng?
Đề thi học sinh giỏi Toán 12 năm 2020 - 2021 sở GDĐT Nam Định
Ngày … tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức kỳ thi chọn học sinh giỏi (HSG) môn Toán (tổ hợp) lớp 12 THPT năm học 2020 – 2021. Đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT Nam Định gồm 02 phần: Phần I: Trắc nghiệm một lựa chọn (Thí sinh ghi đáp án vào ô tương ứng của tờ giấy thi), Phần II: Thí sinh ghi câu trả lời vào giấy thi theo hàng dọc; thời gian làm bài 60 phút. Trích dẫn đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT Nam Định : + Gọi S là tập hợp tất cả các số tự nhiên có 19 chữ số lấy từ tập X 6;8 sao cho mỗi số trong tập hợp S phải chứa ít nhất một chữ số 8 và không có bất kì hai chữ số 8 nào đứng cạnh nhau.Tính số phần tử của tập hợp S. + Cho hình chóp S.ABCD có đáy là hình thoi cạnh bằng 4a, tam giác BCD đều, hình chiếu vuông góc của đỉnh S trên mặt đáy nằm trong hình thoi ABCD, các mặt bên của hình chóp cùng tạo với mặt phẳng đáy góc bằng 45. Tính thể tích của khối nón tạo bởi hình nón có đỉnh S và đáy là hình tròn nội tiếp hình thoi. + Cho hình chóp S.ABCD có đáy là hình vuông; biết khoảng cách từ đỉnh S đến AB và CD lần lượt là 377 và 5; khoảng cách từ S đến mặt đáy bằng 4. Hình chiếu vuông góc H của S xuống mặt đáy nằm trong hình vuông ABCD. Đặt V là thể tích khối chóp S.ABCD. Chọn mệnh đề đúng.
Đề thi học sinh giỏi tỉnh Toán 12 năm 2020 - 2021 sở GDĐT Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021 sở GD&ĐT Bắc Ninh; đề thi được biên soạn theo dạng đề trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án mã đề 543, 511, 009, 950. Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông ABCD cạnh a, góc giữa mặt bên và mặt phẳng đáy là α thoả mãn cos α = 1/3. Mặt phẳng (P) qua AC và vuông góc với mặt phẳng (SAD) chia khối chóp S.ABCD thành hai khối đa diện. Tỉ lệ thể tích hai khối đa diện là gần nhất với giá trị nào trong các giá trị sau? + Một khối gỗ hình trụ với bán kính đáy bằng 6 và chiều cao bằng 8. Trên một đường tròn đáy nào đó ta lấy hai điểm A, B sao cho cung AB có số đo 120 độ. Người ta cắt khúc gỗ bởi một mặt phẳng đi qua A, B và tâm của hình trụ (tâm của hình trụ là trung điểm của đoạn nối tâm hai đáy) để được thiết diện như hình vẽ. Biết diện tích S của thiết diện thu được có dạng S = aπ + b3.Tính P = a + b. + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (1;1;1), B(2;0;1) và mặt phẳng (P). Viết phương trình chính tắc của đường thẳng d đi qua A, song song với mặt phẳng (P) sao cho khoảng cách từ B đến d lớn nhất.