Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Lâm Đồng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lâm Đồng; kỳ thi được diễn ra vào thứ Sáu ngày 03 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Lâm Đồng : + An mua một chiếc laptop cũ đã qua sử dụng 1 năm tại cửa hàng X với số tiền là 29,6 triệu đồng. Sau khi sử dụng được thêm 3 năm nữa, An mang chiếc laptop đó ra cửa hàng X để bán, cửa hàng mua lại với số tiền 17 triệu đồng. An thắc mắc về sự chênh lệch nhiều giữa giá mua và giá bán nên được nhân viên cửa hàng giải thích về mối liên hệ giữa giá tiền của một chiếc laptop với thời gian sử dụng biểu thị dưới dạng một hàm số y = ax + b (x là số năm sử dụng, y là giá tiền). Hãy tính giá tiền ban đầu của chiếc laptop nêu trên khi chưa qua sử dụng. + Hưởng ứng phong trào viết thư gửi các bạn thiếu nhi tại huyện đảo Trường Sa nhân dịp Tết Nguyên đán, hai bạn Lâm và Đồng mua số tờ giấy trắng bằng nhau và mua số phong bì bằng nhau. Lâm sử dụng một tờ giấy cho mỗi bức thư trong khi đó Đồng sử dụng ba tờ giấy cho mỗi bức thư. Biết rằng, Lâm dùng hết số phong bị đã mua còn dư 10 tờ giấy, Đồng dùng hết số giấy đã mua còn dư 10 phong bì. Tìm số tờ giấy mỗi bạn đã mua. + Một cửa hàng bán giày thể thao mỗi tuần bán được 50 đôi giày với giá là 500 nghìn đồng một đôi. Cửa hàng dự định giảm giá bán, ước tính nếu cứ giảm giá bán mỗi đôi 1 nghìn đồng thì số giày mỗi tuần bán tăng thêm được 1 đôi. Xác định giá bán để mỗi tuần cửa hàng giày thể thao thu được lợi nhuận cao nhất, biết rằng giá nhập về ban đầu cho mỗi đôi giày thể thao là 300 nghìn đồng.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2023 - 2024 sở GDĐT Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thái Bình; kỳ thi được diễn ra vào ngày … tháng 12 năm 2023. Trích dẫn Đề thi học sinh giỏi Toán 9 năm 2023 – 2024 sở GD&ĐT Thái Bình : + Trên hệ trục tọa độ Oxy cho điểm hai điểm A(-1;1), B(-5;-3) và đường thẳng (d): y = ax + b. a) Tính diện tích tam giác OAB. b) Tìm a và b biết đường thẳng (d) vuông góc với đường thẳng AB và tiếp xúc với đường tròn tâm O(0;0) bán kính R = 42. + Cho tam giác ABC nhọn có AB < AC và nội tiếp đường tròn (O). Các đường cao AM, BN, CP cắt nhau tại H. Gọi K, Q lần lượt là giao điểm của NP với AH và AO, I là trung điểm của AH. 1. Chứng minh: IN2 = IK.IM. 2. Gọi E và F lần lượt là trung điểm của BN và CP. Chứng minh EF vuông góc với QM. + Cho đường thẳng (d) và đường tròn (O; R) không giao nhau. Trên đường thẳng (d) lấy điểm A. Từ điểm A kẻ tiếp tuyến AB, AC với (O; R) (B, C là tiếp điểm) và cát tuyến ADE không đi qua tâm O (D nằm giữa A và E). Gọi I là trung điểm của DE. Đường thẳng BC cắt OA và OI lần lượt tại H và K. 1. Chứng minh rằng KE là tiếp tuyến của (O; R). 2. Chứng minh rằng khi A di động trên (d) thì H di động trên một đường tròn cố định.
Đề thi HSG Toán 9 năm 2023 - 2024 phòng GDĐT thành phố Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An. Trích dẫn Đề thi HSG Toán 9 năm 2023 – 2024 phòng GD&ĐT thành phố Vinh – Nghệ An : + Chứng minh rằng với mọi số nguyên n thì: n3 + 3n2 + 2024n chia hết cho 6. b. Tìm số tự nhiên n sao cho: 3n + 19 là số chính phương. c. Cho a, b là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức: Q. + Cho nửa đường tròn tâm O, đường kính AB = 2a. Lấy điểm M bất kì trên đoạn thẳng AB (không trùng với A và B). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ hai tia Mx, My sao cho AMx = BMy = 30°. Tia Mx và tia My cắt nửa đường tròn tâm O lần lượt tại E và F. Gọi P, Q theo thứ tự là hình chiếu của điểm E, F trên AB. a. Giả sử EF = a3. Tính số đo góc EOF. b. Cho AM = a/2. Tính diện tích hình thang EPQF theo a. c. Chứng minh rằng khi M di động trên đoạn thẳng AB, điểm O luôn cách đường thẳng EF một khoảng không đổi. + Cho tam giác ABC, O là giao điểm của ba đường phân giác. Qua O kẻ đường thẳng bất kỳ cắt hai cạnh AB, AC tại M, N. Giả sử điểm O cố định và khoảng cách từ O đến cạnh AB của tam giác ABC bằng 1cm. Xác định dạng của tam giác ABC và vị trí của đường thẳng MN để diện tích tam giác AMN đạt giá trị nhỏ nhất.
Đề thi HSG Toán 9 cấp thị xã năm 2023 - 2024 phòng GDĐT Đông Hòa - Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp thị xã năm học 2023 – 2024 phòng Giáo dục và Đào tạo thị xã Đông Hòa, tỉnh Phú Yên. Trích dẫn Đề thi HSG Toán 9 cấp thị xã năm 2023 – 2024 phòng GD&ĐT Đông Hòa – Phú Yên : + Tìm số tự nhiên n bé nhất để: B = n3 + 5n2 – 9n – 45 chia hết cho 2023. Tìm các nghiệm nguyên của phương trình: 5x – 3y = 2xy – 11. + Cho hình thang ABCD, đáy lớn AB. Từ D kẻ đường thẳng song song với cạnh BC, cắt đường chéo AC tại M và cắt cạnh AB tại K. Từ C kẻ đường thẳng song song với cạnh AD, cắt đường chéo BD tại I và cắt cạnh AB tại F. Qua F kẻ đường thẳng song song với AC cắt cạnh BC tại P. Chứng minh rằng: a) Tứ giác ADCF là hình bình hành và MP // AB. b) Ba điểm M, I, P thẳng hàng. c) DC2 = AB.MI. + Cho hình thoi ABCD với góc A bằng 120. Tia Ax tạo với tia AB góc BAx bằng 15° và cắt cạnh BC tại M, cắt đường thẳng CD tại N. Chứng minh rằng: 3/AM2 + 3/AN2 = 4/AB2.
Đề thi HSG Toán 9 cấp huyện năm 2023 - 2024 phòng GDĐT Khoái Châu - Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Khoái Châu, tỉnh Hưng Yên; kỳ thi được diễn ra vào sáng thứ Năm ngày 23 tháng 11 năm 2023.