Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit - Nguyễn Trọng

Tài liệu gồm 99 trang, được biên soạn bởi thầy giáo Nguyễn Trọng, phân dạng và tuyển chọn các bài tập trắc nghiệm chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit, có đáp án và lời giải chi tiết, giúp học sinh luyện tập khi học chương trình Giải tích 12 chương 2. Mục lục tài liệu chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit – Nguyễn Trọng: Bài 1. Mũ – lũy thừa. + Dạng 1. Tính giá trị biểu thức (Trang 1). + Dạng 2. So sánh các lũy thừa (Trang 3). + Dạng 3. Biến đổi, rút gọn, biểu diễn các biểu thức chứa lũy thừa (Trang 5). Bài 2. Hàm số lũy thừa. + Dạng 1. Tìm tập xác định của hàm số thức chứa lũy thừa (Trang 9). + Dạng 2. Đạo hàm của hàm số luỹ thừa (Trang 11). + Dạng 3. Tính chất, đồ thị của hàm số luỹ thừa (Trang 14). Bài 3. Logarit. + Dạng 1. Tính giá trị biểu thức (Trang 19). + Dạng 2. Biến đổi, rút gọn, biểu diễn biểu thức chứa logarit, mũ, lũy thừa (Trang 21). + Dạng 3. Biểu diễn các biểu thức chứa logarit theo biểu thức khác (Trang 25). Bài 4. Hàm số mũ – logarit. + Dạng 1. Tìm tập xác định của hàm số mũ, hàm số logarit (Trang 29). + Dạng 2. Đạo hàm của hàm số mũ, logarit (Trang 31). + Dạng 3. Sự biến thiên và đồ thị của hàm số mũ – logarit (Trang 34). + Dạng 4. Tìm GTLN – GTNN của hàm số (Trang 38). + Dạng 5. Toán thực tế (Trang 40). + Dạng 6. Toán tìm tham số m để hàm số xác định (Trang 45). Bài 5. Phương trình mũ. + Dạng 1. Phương trình mũ cơ bản (Trang 50). + Dạng 2. Phương trình mũ đưa về cùng cơ số (Trang 52). + Dạng 3. Đặt ẩn phụ (Trang 54). + Dạng 4. Phương trình chứa tham số m thỏa mãn điều kiện (Trang 57). Bài 6. Phương trình logarit. + Dạng 1. Phương trình logarit cơ bản (Trang 64). + Dạng 2. Phương trình logarit đưa về cùng cơ số (Trang 66). + Dạng 3. Đặt ẩn phụ (Trang 68). + Dạng 4. Phương trình chứa tham số m (Trang 71). Bài 7. Bất phương trình mũ. + Dạng 1. Bất phương trình mũ cơ bản (Trang 77). + Dạng 2. Bất phương trình mũ đặt ẩn phụ (Trang 79). + Dạng 3. Bất phương trình mũ chứa tham số (Trang 82). Bài 8. Bất phương trình logarit. + Dạng 1. Bất phương trình logarit cơ bản (Trang 88). + Dạng 2. Bất phương trình logarit đặt ẩn phụ (Trang 92). + Dạng 3. Bất phương trình logarit chứa tham số (Trang 94).

Nguồn: toanmath.com

Đọc Sách

Trắc nghiệm VD - VDC mũ - logarit - Đặng Việt Đông
Với mục đích hỗ trợ các em học sinh khối 12 trong quá trình học tập nâng cao các dạng toán trong chương trình Giải tích 12 chương 2 – hàm số lũy thừa, hàm số mũ và hàm số logarit, ôn tập hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, thầy Đặng Việt Đông biên soạn cuốn tài liệu trắc nghiệm vận dụng – vận dụng cao chuyên đề mũ và logarit. Tài liệu trắc nghiệm VD – VDC mũ – logarit – Đặng Việt Đông gồm 116 trang với các bài tập trắc nghiệm mũ và logarit ở mức độ vận dụng và vận dụng cao, được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường, sở GD&ĐT, đề tham khảo – đề minh họa – đề chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo, các bài tập về mũ và logarit được phân tách thành các dạng toán cụ thể, có đáp án và lời giải chi tiết. [ads] Các dạng toán được đề cập trong tài liệu trắc nghiệm VD – VDC mũ – logarit – Đặng Việt Đông: + Dạng toán 1. Lũy thừa – mũ và lôgarit, hàm số mũ và hàm số lôgarit. + Dạng toán 2. Giá trị lớn nhất và giá trị nhỏ nhất hàm số mũ và lôgarit. + Dạng toán 3. Phương trình và bất phương trình mũ. + Dạng toán 4. Phương trình và bất phương lôgarit. + Dạng toán 5. Ứng dụng mũ và logarit vào việc giải các bài toán thực tế. Xem thêm : Trắc nghiệm VD – VDC hàm số – Đặng Việt Đông
Tuyển tập các bài toán mũ và logarit hay và đặc sắc - Nguyễn Xuân Nhật
Tài liệu gồm 88 trang được biên soạn bởi tác giả Nguyễn Xuân Nhật tuyển chọn các câu hỏi và bài toán trắc nghiệm mũ và logarit hay và đặc sắc, có đáp án và lời giải chi tiết, đây là món quà của tác giả gửi đến các em học sinh lớp 12 nhân dịp Tết trung thu 2019. Tài liệu bao gồm 4 chủ đề: + Chủ đề 1. Phương trình bất phương trình mũ và logarit. + Chủ đề 2. Cực trị mũ và logarit. + Chủ đề 3. Đồ thị mũ và logarit. + Chủ đề 4. Ứng dụng mũ và logarit vào bài toán thực tế. [ads] Trích dẫn tài liệu tuyển tập các bài toán mũ và logarit hay và đặc sắc – Nguyễn Xuân Nhật: + Cho hàm số y = 1/(x – 1) + 1/(x – 2) + … + 1/(x – 2019) + 1/(x – 2020) và y = e^x – m + 1 (m tham số) có đồ thị lần lượt là (C1) và (C2). Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m thuộc [-2020;2020] để (C1) cắt (C2) tại đúng 2020 nghiệm phân biệt? + Cho các số thực a, b, c thuộc (1;+∞) thỏa mãn a^10 ≤ b và loga b + 2logb c + 5logc a = 12. Tìm giá trị nhỏ nhất của biểu thức P = 2loga c + 5logc b + 10logb a. + Vợ chồng anh A dự định lương của vợ dùng chi trả sinh hoạt phí, lương của anh A được gửi tiết kiệm hàng tháng. Biết đầu tháng này anh mới được tăng lương nhận mức lương 6 triệu đồng/tháng và cứ sau 2 năm lương của anh được tăng lên 10% so với 2 năm trước đó. Giả sử rằng dự định của vợ chồng anh được thực hiện từ đầu tháng này và lãi suất ngân hàng ổn định ở 0,5 % một tháng. Tính số tiền vợ chồng anh A tiết kiệm được sau 50 tháng.
Tài liệu tự học hàm số lũy thừa, hàm số mũ và hàm số logarit
Tài liệu gồm 47 trang bao gồm lý thuyết, ví dụ mẫu và bài tập tự luyện chủ đề hàm số lũy thừa, hàm số mũ và hàm số logarit, giúp học sinh học tốt chương trình Giải tích 12 chương 2. Khái quát nội dung tài liệu tự học hàm số lũy thừa, hàm số mũ và hàm số logarit: PHẦN 1 . HÀM SỐ LŨY THỪA-HÀM SỐ MŨ-HÀM SỐ LOGARIT. A. LÝ THUYẾT 2.1 Lũy thừa – Hàm số lũy thừa. 2.1.1 Lũy thừa. 2.1.2 Hàm số lũy thừa: y = x^α. 2.2 Logarit. 2.2.1 Kiến thức cơ bản. 2.3 Hàm số mũ – Hàm số logarit. 2.3.1 Hàm số mũ: y = a^x (0 < a khác 1). 2.3.2 Hàm số logarit: y = logax (0 < a khác 1 và x > 0). 2.3.3 Bảng đạo hàm. B. BÀI TÂP TỰ LUẬN 2.4 Bài tập về lũy thừa. 2.4.1 Dạng 1: Tính giá trị biểu thức. 2.4.2 Dạng 2: Đơn giản biểu thức. 2.4.3 Dạng 3: Lũy thừa hữu tỉ. 2.4.4 Dạng 4: So sánh cặp số. 2.4.5 Dạng 5: Bài toán thực tế. 2.5 Bài tập về logarit. 2.5.1 Dạng 1: Tính giá trị biểu thức. 2.5.2 Dạng 2: Biến đổi logarit. 2.5.3 Dạng 3: Chứng minh đẳng thức logarit. 2.5.4 Dạng 4: So sánh cặp số. 2.5.5 Dạng 4: Bài toán thực tế. 2.6 Bài tập hàm số mũ-hàm số logarit. 2.6.1 Dạng 1: Tập xác định hàm số. 2.6.2 Dạng 2: Đạo hàm. 2.6.3 Dạng 3: Chứng minh hàm số đã cho thỏa hệ thức cho trước. 2.6.4 Dạng 4: Giải phương trình, bất phương trình. 2.6.5 Dạng 5: Giá trị lớn nhất, giá trị nhỏ nhất. [ads] PHẦN 2 . PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ VÀ LOGARIT. A. PHƯƠNG TRÌNH 2.7 Phương trình mũ. 2.7.1 Phương trình mũ cơ bản. 2.7.2 Một số phương pháp giải phương trình mũ. 2.7.2.1 Phương pháp đưa về cùng cơ số. 2.7.2.2 Phương pháp logarit hóa. 2.7.2.3 Phương pháp đặt ẩn phụ. 2.7.2.4 Sử dụng tính đơn điệu của hàm số. 2.7.2.5 Phương trình tích. 2.7.3 Bài toán liên quan tham số m. 2.8 Phương trình logarit. 2.8.1 Phương trình logarit cơ bản. 2.8.2 Một số phương pháp giải phương trình logarit. 2.8.2.1 Phương pháp đưa về cùng cơ số. 2.8.2.2 Phương pháp mũ hóa. 2.8.2.3 Phương pháp đặt ẩn phụ. 2.8.2.4 Sử dụng tính đơn diệu hàm số. 2.8.3 Bài toán liên quan tham số m. B. BẤT PHƯƠNG TRÌNH 2.9 Bất phương trình mũ và bất phương trình logarit. 2.9.1 Bất phương trình mũ. 2.9.2 Bất phương trình logarit. 2.10 Hệ phương trình mũ và logarit. 2.11 Các ví dụ. 2.12 Bài tập bất phương trình, hệ phương trình mũ và logarit. 2.12.1 Giải các bất phương trình. 2.12.2 Giải hệ phương trình.
Các dạng toán bất phương trình mũ và bất phương trình logarit thường gặp
Tài liệu gồm 50 trang được biên soạn bởi thầy Nguyễn Bảo Vương tuyển chọn 104 câu hỏi và bài toán trắc nghiệm chủ đề bất phương trình mũ và bất phương trình logarit thường gặp trong các đề thi Trung học Phổ thông Quốc gia môn Toán, các câu hỏi và bài tập đều có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán bất phương trình mũ và bất phương trình logarit thường gặp: PHẦN A . CÂU HỎI Dạng 1 . Bất phương trình logarit. Dạng 1.1 Bất phương trình cơ bản (Trang 1). Dạng 1.1.1 Không cần biến đổi (Trang 1). Dạng 1.1.2 Cần biến đổi (Trang 4). Dạng 1.2 Kết hợp nhiều phương pháp đặt ẩn phụ, cô lập m, đánh giá (Trang 6). Dạng 2 . Bất phương trình mũ. Dạng 2.1 Bất phương trình cơ bản (Trang 7). Dạng 2.1.1 Không cần biến đổi (Trang 7). Dạng 2.1.2 Cần biến đổi (Trang 10). Dạng 2.3 Giải và biện luận một số bất phương trình khó và khác (Trang 11). Dạng 2.3.1 Kết hợp nhiều phương pháp đặt ẩn phụ, cô lập m, đánh giá (Trang 11). Dạng 2.3.2 Giải bất phương trình khi biết đồ thị của f’(x) (Trang 11). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng 1 . Bất phương trình logarit. Dạng 1.1 Bất phương trình cơ bản (Trang 14). Dạng 1.1.1 Không cần biến đổi (Trang 14). Dạng 1.1.2 Cần biến đổi (Trang 20). Dạng 1.2 Kết hợp nhiều phương pháp đặt ẩn phụ, cô lập m, đánh giá (Trang 24). Dạng 2 . Bất phương trình mũ. Dạng 2.1 Bất phương trình cơ bản (Trang 34). Dạng 2.1.1 Không cần biến đổi (Trang 34). Dạng 2.1.2 Cần biến đổi (Trang 39). Dạng 2.3 Giải và biện luận một số bất phương trình khó và khác (Trang 41). Dạng 2.3.1 Kết hợp nhiều phương pháp đặt ẩn phụ, cô lập m, đánh giá (Trang 41). Dạng 2.3.2 Giải bất phương trình khi biết đồ thị của f’(x) (Trang 46).