Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm định Toán 12 lần 2 năm 2018 - 2019 trường THPT Yên Phong 2 - Bắc Ninh

Thứ Tư ngày 20 tháng 03 năm 2019, thầy và trò trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi kiểm chất lượng lần thứ hai môn Toán 12 năm học 2018 – 2019, kỳ thi nhằm đánh giá tổng quát chất lượng môn Toán của học sinh khối 12 trước khi các em bước vào kỳ thi THPT Quốc gia môn Toán năm học 2018 – 2019. Đề kiểm định Toán 12 lần 2 năm 2018 – 2019 trường THPT Yên Phong 2 – Bắc Ninh có mã đề 121 gồm 05 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh làm bài thi Toán trong 90 phút, nội dung đề tập trung chủ yếu vào chương trình Toán 12, ngoài ra có một số ít các bài toán về xác suất, dãy số … trong chương trình Toán 11, đề thi có đáp án. [ads] Trích dẫn đề kiểm định Toán 12 lần 2 năm 2018 – 2019 trường THPT Yên Phong 2 – Bắc Ninh : + Khẳng định nào sau đây đúng? A. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau. B. Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau. C. Hai mặt phẳng song song khi và chỉ khi góc giữa chúng bằng 0 độ. D. Hai đường thẳng trong không gian cắt nhau khi và chỉ khi góc giữa chúng lớn hơn 0 độ và nhỏ hơn 90 độ. + Trong không gian, cho hình chữ nhật ABCD có AB = 1 và AD = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN, ta được một hình trụ. Tính diện tích toàn phần Stp của hình trụ đó. + Gọi S là tập tất cả các giá trị của x ∈ [0;100] để ba số sinx, (cosx)^2, sin3x theo thứ tự đó lập thành cấp số cộng. Tính tổng tất cả các phần tử của tập S.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán tốt nghiệp THPT 2022 lần 1 cụm 6 trường THPT sở GDĐT Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 1 cụm 6 trường THPT trực thuộc sở Giáo dục và Đào tạo tỉnh Hải Dương. Trích dẫn đề thi thử Toán tốt nghiệp THPT 2022 lần 1 cụm 6 trường THPT sở GD&ĐT Hải Dương : + Hướng tới kỉ niệm ngày thành lập trường Đoàn TNCS Hồ Chí Minh. Khối 12 thiết kế bồn hoa gồm hai Elip bằng nhau có độ dài trục lớn bằng 8m và độ dài trục nhỏ bằng 4m đặt chồng lên nhau sao cho trục lớn của Elip này trùng với trục nhỏ của Elip kia và ngược lại (như hình vẽ). Phần diện tích nằm trong đường tròn đi qua 4 giao điểm của hai Elip dùng để trồng cỏ, phần diện tích bốn cánh hoa nằm giữa hình tròn và Elip dùng để trồng hoa. Biết kinh phí để trồng hoa là 150.000đồng 2 1m, kinh phí để trồng cỏ là 100.000đồng 2 1m. Tổng số tiền dùng để trồng hoa và trồng cỏ cho bồn hoa gần với số nào nhất trong các số sau? A. 4.100.000 đồng. B. 4.550.000 đồng. C. 3.100.000 đồng. D. 4.300.000 đồng. + Trong không gian Oxyz cho mặt cầu 2 22 1 2 3 27 Sx y z. Gọi là mặt phẳng đi qua 2 điểm A 0 0 4 B 2 0 0 và cắt S theo giao tuyến là đường tròn C sao cho khối nón có đỉnh là tâm của S là hình tròn C có thể tích lớn nhất. Biết mặt phẳng có phương trình dạng ax by z c 0 khi đó abc 2 3 bằng? + Tính tổng bình phương tất cả các giá trị của tham số m để đường thẳng d 1 y x cắt đồ thị hàm số 3 2 1 C y x mx tại ba điểm phân biệt A 0 1 B C sao cho tiếp tuyến với C tại B và C vuông góc nhau.
Đề thi thử tốt nghiệp THPT 2022 môn Toán lần 3 trường Tiên Du 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT 2022 môn Toán lần 3 trường Tiên Du 1 – Bắc Ninh. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán lần 3 trường Tiên Du 1 – Bắc Ninh : + Cho hàm số 3 2 1 2 f x ax bx cx và 2 g x dx ex 1 a b c d e. Biết rằng đồ thị của hàm số y f x và y g x cắt nhau tại ba điểm có hoành độ lần lượt là 3 1 1 (tham khảo hình vẽ). Hình phẳng giới hạn bởi hai đồ thị đã cho gồm hai phần có diện tích lần lượt là 1 2 S S được đánh dấu trong hình vẽ. Khi đó tỉ số 1 2 S S bằng? + Bạn An có 5 cái kẹo vị hoa quả và 4 cái kẹo vị socola. An lấy ngẫu nhiên 3 cái kẹo cho vào hộp để tặng cho em gái. Tính xác suất để 3 cái kẹo có cả vị hoa quả và vị socola. + Cho tứ diện OABC có OA OB OC đôi một vuông góc với nhau và OA OB OC a. Gọi M là trung điểm của BC (tham khảo hình vẽ bên dưới). Góc giữa hai đường thẳng OM và AB bằng?
Đề thi thử tốt nghiệp THPT 2022 môn Toán lần 2 trường Tiên Du 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT 2022 môn Toán lần 2 trường Tiên Du 1 – Bắc Ninh. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán lần 2 trường Tiên Du 1 – Bắc Ninh : + Một miếng tôn hình chữ nhật có chiều dài 12,2dm, chiều rộng 2 dm được uốn lại thành mặt xung quanh của một chiếc thùng đựng nước có chiều cao 2 dm (như hình vẽ). Biết rằng chỗ ghép mất 2cm. Hỏi thùng có thể đựng được nhiều nhất bao nhiêu lít nước? + Một người đầu tư vào 25 tờ trái phiếu, mỗi tờ có mệnh giá là 2 triệu đồng với lãi suất r%/năm trong vòng 5 năm (theo hình thức lãi suất kép). Sau 5 năm người đó có được số tiền cả gốc lẫn lãi là 73,5 triệu đồng. Hỏi lãi suất của tờ trái phiếu đó là bao nhiêu phần trăm một năm. + Cho hàm số 3 2 y x m x m 3 1. Gọi M a b là điểm cực đại của đồ thị hàm số 1 ứng với một giá trị m thích hợp đồng thời là điểm cực tiểu của đồ thị hàm số 1 ứng với một giá trị khác của m. Tính a b 2.
Đề thi thử Toán TN THPT 2022 lần 1 trường THPT Trần Quốc Tuấn - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT môn Toán lần 1 năm học 2021 – 2022 trường THPT Trần Quốc Tuấn, tỉnh Quảng Ngãi; đề thi có đáp án mã đề 001 002 003 004 005 006 007 008 009 010 011 012. Trích dẫn đề thi thử Toán TN THPT 2022 lần 1 trường THPT Trần Quốc Tuấn – Quảng Ngãi : + Một khúc gỗ có dạng hình khối nón có bán kính đáy bằng r 2m chiều cao h 8m. Bác thợ mộc chế tác từ khúc gỗ đó thành một khúc gỗ có dạng hình khối trụ như hình vẽ. Gọi V là thể tích lớn nhất của khúc gỗ hình trụ sau khi chế tác. Tính V. + Một công ty xây nhà xưởng dạng hình hộp chữ nhật có diện tích mặt sàn là 2 1458m và chiều cao cố định. Họ xây các bức tường xung quanh và bên trong để ngăn nhà xưởng thành ba phòng hình chữ nhật có kích thước như nhau (không kể trần nhà). Vậy cần phải xây các phòng theo kích thước bao nhiêu để tiết kiệm chi phí nhất (bỏ qua độ dày các bức tường)? + Cho hàm số 2 2 x m y x m có đồ thị là C và m 0. Gọi A B lần lượt là giao điểm của C với các trục Ox Oy. Có bao nhiêu giá trị nguyên của tham số m để diện tích hình tròn ngoại tiếp tam giác OAB nhỏ hơn 2022? + Trong không gian với hệ tọa độ Oxyz, tam giác ABC với A B C a b 1 3 3 2 4 5 2 nhận điểm G c 2 3 làm trọng tâm của nó thì giá trị của tổng a b c bằng? + Cho hàm số f x có đạo hàm liên tục trên và có bảng biến thiên như dưới đây 5 3 -1 0 x f'(x) 1 1 0 ∞ -2 -2 f(x). Phương trình 2 f x m 2 3 với m là tham số, có nhiều nhất bao nhiêu nghiệm thực phân biệt?