Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán cấp trường năm 2023 2024 trường chuyên Nguyễn Trãi Hải Dương

Nội dung Đề HSG Toán cấp trường năm 2023 2024 trường chuyên Nguyễn Trãi Hải Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra chọn đội tuyển học sinh giỏi môn Toán cấp trường năm học 2023 – 2024 trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 04 tháng 09 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán cấp trường năm 2023 – 2024 trường chuyên Nguyễn Trãi – Hải Dương : + Cho tam giác ABC có đường tròn nội tiếp (I) tiếp xúc với BC, CA, AB tại D, E, F. H là hình chiếu của A trên BC. N là trung điểm của AH. Đường thẳng qua D, N cắt CA, AB lần lượt tại J, S; BJ cắt CS tại P. Các đường thẳng DA, DP lần lượt cắt (I) tại G, L. Gọi EF cắt BC tại X. a) Chứng minh rằng A, P, X thẳng hàng. b) Gọi K, T theo thứ tự là giao điểm thứ hai của DI, DN và (I). Chứng minh: K, T, X thẳng hàng. c) Chứng minh rằng bốn điểm B, C, G, L cùng nằm trên một đường tròn. + Cho số nguyên dương n và p là số nguyên tố lẻ. Giả sử n = qp + r với 0 =< r =< p − 1 và q nguyên dương. Đặt. Sn. a) Khi p = 3, chỉ ra một giá trị n nguyên dương lớn hơn 5 sao cho Sn chia hết cho p. b) Chứng minh rằng nếu p là ước của Sn thì q là số lẻ. + Tìm tất cả các số nguyên dương n sao cho có thể phân chia tập {1; 2; …; 3n} thành n tập con 3 phần tử rời nhau {a; b; c} sao cho b – a và c − b là các số khác nhau trong tập {n − 1; n; n + 1}.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 - 2018 sở GD và ĐT Thừa Thiên Huế
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 – 2018 sở GD và ĐT Thừa Thiên Huế gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết .
Đề thi thử HSG Toán 12 THPT năm học 2017 - 2018 trường THPT Bình Xuyên - Vĩnh Phúc
Đề thi thử HSG Toán 12 THPT năm học 2017 – 2018 trường THPT Bình Xuyên – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong mặt phẳng với hệ trục tọa độ vuông góc Oxy, cho đường tròn (C) và đường thẳng (d) lần lượt có phương trình (x – 2)^2 + (y + 1)^2 = 8 và x – 2y + 3 = 0. Cho hình thoi ABCD ngoại tiếp đường tròn (C) và điểm A thuộc đường thẳng (d). Hãy tìm tọa độ các đỉnh A, B, C, D biết rằng BD = 2AC và tung độ của điểm A không nhỏ hơn 2. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng SAvà mặt phẳng đáy bằng 45 độ, góc giữa mặt phẳng (SAB) và mặt phẳng đáy bằng 60 độ. Tính thể tích khối chóp S.ABCD biết rằng khoảng cách giữa hai đường thẳng CD và SA bằng a√6. + Cho hàm số y = (x – 2)/(x – 1) có đồ thị (C). Hãy lập phương trình đường thẳng (d) đi qua điểm M (3; -1) và cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho MB = 3.MA.
Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An - Gia Lai
Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An – Gia Lai gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC cân tại A, có đỉnh A(-1; 4) và các điểm B, C thuộc đường thẳng Δ: x – y – 4 = 0. Xác định tọa độ điểm B và C, biết diện tích tam giác ABC bằng 18. [ads] + Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB = a, BC = b, SA = SB = SC = SD = c. K là hình chiếu vuông góc của P xuống AC. a/ Tính độ dài đoạn vuông góc chung của SA và BK. b/ Gọi M, N lần lượt là trung điểm của đoạn thẳng AK và CD. Chứng minh: Các đường thẳng BM và MN vuông góc nhau. + Cho tập A = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Lập ngẫu nhiên một số có 3 chữ số khác nhau với các chữ số chọn từ tập A. Tính xác suất để số lập được chia hết cho 6.
Đề thi chọn HSG tỉnh Toán 12 năm học 2017 - 2018 sở GD và ĐT Hải Dương
Đề thi chọn HSG tỉnh Toán 12 năm học 2017 – 2018 sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Môn bóng đá nam SEA GAME có 10 đội bóng tham dự trong đó có Việt Nam và Thái Lan. Chia 10 đội bóng này thành 2 bảng A, B. Mỗi bảng có 5 đội. Tính xác suất sao cho Việt Nam và Thái Lan ở cùng một bảng. [ads] + Cho tứ diện ABCD có AB = CD = c, AC = BD = b, AD = BC = a. a. Tính góc giữa hai đường thẳng AB, CD b. Chứng minh rằng trọng tâm của tứ diện ABCD cách đều tất cả các mặt của tứ diện + Cho hình chóp S.ABCD có SA = x, tất cả các cạnh còn lại có độ dài bằng 1. Tính thể tích khối chóp đó theo x và tìm x để thể tích đó là lớn nhất.