Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 năm 2023 - 2024 sở GDĐT Vĩnh Phúc

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc. Trích dẫn Đề thi học sinh giỏi Toán 9 năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc : + Trong mặt phẳng tọa độ Oxy, các đường thẳng y = 2, y = 6, y = mx – 2 (m khác 0) và trục tung cắt nhau, phần chung giữa chúng tạo thành một hình thang. Tìm m để diện tích hình thang đó bằng 4 đơn vị diện tích. + Cho hình chữ nhật ABCD có AB = 3AD = 3a. Trên cạnh DC lần lượt lấy hai điểm P, Q sao cho DP = PQ = QC. Chứng minh hai tam giác PAQ và PCA đồng dạng. + Trên một mảnh đất hình chữ nhật ABCD có diện tích 200m2, người chủ lấy một phần đất để trồng hoa. Biết phần đất trồng hoa là hình chữ nhật với hai đỉnh đối diện là A và H, với H thuộc đường chéo BD. Hỏi số tiền lớn nhất mà người chủ cần dùng để trồng hoa là bao nhiêu? Biết rằng chi phí trồng hoa là 50000 đồng/m2.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2018 - 2019 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2018 – 2019 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 17/03/2019, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi học sinh giỏi Toán 9 THCS năm 2018 - 2019 sở GDĐT Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 THCS năm 2018 – 2019 sở GD&ĐT Quảng Trị.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2018 - 2019 sở GDĐT Gia Lai
Ngày 07 tháng 03 năm 2019, sở Giáo dục và Đào tạo Gia Lai tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2018 – 2019, các em đạt giải trong kỳ thi này sẽ là những tấm gương tiêu biểu trong học tập cho học sinh toàn tỉnh Gia Lai. Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2018 – 2019 sở GD&ĐT Gia Lai được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài trong khoảng thời gian 150 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2018 – 2019 sở GD&ĐT Gia Lai : + Một đoàn học sinh đi tham quan quảng trường Đại Đoàn Kết tỉnh Gia Lai. Nếu mỗi ô tô chở 12 người thì thừa 1 người. Nếu bớt đi 1 ô tô thì số học sinh của đoàn được chia đều cho các ô tô còn lại. Hỏi có bao nhiêu học sinh đi tham quan và có bao nhiêu ô tô? Biết rằng mỗi ô tô chở không quá 16 người. [ads] + Trong kỳ thi chọn học sinh giỏi THCS cấp Tỉnh, đoàn học sinh huyện A có 17 học sinh dự thi. Mỗi thí sinh có số báo danh là một số tự nhiên trong khoảng từ 1 đến 907. Chứng minh rằng có thể chọn ra 9 học sinh trong đoàn có tổng các số báo danh chia hết cho 9. + Một cây nến hình lăng trụ đứng đáy lục giác đều có chiều cao và độ dài cạnh đáy lần lượt là 20cm và 1cm . Người ta xếp cây nến trên vào trong một cái hộp có dạng hình hộp chữ nhật sao cho cây nến nằm khít trong hộp. Tính thể tích cái hộp.
Đề thi học sinh giỏi Toán 9 năm 2018 - 2019 sở GDĐT TP HCM
Thứ Tư ngày 13 tháng 03 năm 2019, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi chọn học sinh giỏi Toán 9 cấp thành phố năm học 2018 – 2019. Đề thi học sinh giỏi Toán 9 năm 2018 – 2019 sở GD&ĐT TP HCM gồm 05 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2018 – 2019 sở GD&ĐT TP HCM : + An khởi hành từ Sài Gòn đi Biên Hòa. Sau đó 5 phút, Bình và Cường khởi hành từ Biên Hòa về Sài Gòn. Trên đường đi, An gặp Cường ở địa điểm C rồi gặp Bình ở địa điểm D. Tính vận tốc của mỗi người, biết rằng quang đường Sài Gòn – Biên Hòa dài 39 km; CD = 6 km; Vận tốc của An bằng 1,5 vận tốc của Bình và bằng 3/4 vận tốc của Cường. [ads] + Hộp phô mai có dạng hình trụ, đường kính đáy 12,2 cm và chiều cao 2,1 cm. a) Biết rằng 8 miếng phô mai được xếp nằm sát bên trong hộp và độ dày của giấy gói từng miếng không đáng kể. Hỏi thể tích của một miếng phô mai là bao nhiêu? b) Tính diện tích giấy gói được sử dụng cho một miếng phô mai. (Ghi kết quả gần đúng chính xác đến 1 chữ số thập phân sau dấu phẩy). + Cho tam giác ABC cân tại A, nội tiếp đường tròn (O). Từ B kẻ đường thẳng vuông góc với OC, đường thẳng này cắt AC tại D và cắt (O) tại E (E khác B). Cho biết AB = 8 cm và BC = 4 cm, tính độ dài các đoạn thẳng DE, OA và OD.