Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương pháp tọa độ trong không gian

Tài liệu gồm 86 trang được biên soạn bởi thầy Nguyễn Văn Vinh và thầy Lê Đình Hùng (OMEGA Groups) hướng dẫn giải các dạng toán thường gặp trong chuyên đề phương pháp tọa độ trong không gian (Hình học 12 chương 3). BÀI 1 : HỆ TỌA ĐỘ TRONG KHÔNG GIAN. Hiểu rõ lý thuyết, nắm vững các công thức trong tọa độ không gian cùng với các trường hợp vận dụng của từng công thức. BÀI 2 : PHƯƠNG TRÌNH MẶT PHẲNG. Các dạng toán trong bài này thường yêu cầu viết phương trình mặt phẳng, do vậy ta cần nắm vững các bài toán viết phương trình mặt phẳng kèm theo các điều kiện sau: + Mặt phẳng (α) qua M và song song với (β). + Mặt phẳng (α) đi qua ba điểm A, B, C. + Mặt phẳng (α) đi qua M và vuông góc với đường thẳng d. + Mặt phẳng (α) chứa đường thẳng d và vuông góc với (β). + Mặt phẳng (α) chứa đường thẳng d và song song với đường thẳng d’ (d và d’ chéo nhau). + Mặt phẳng (α) đi qua M và chứa đường thẳng d. + Mặt phẳng (α) chứa 2 đường thẳng cắt nhau d và d’. + Mặt phẳng (α) chứa 2 đường thẳng song song d và d’. + Mặt phẳng (α) là mặt phẳng trung trực của đoạn AB. + Mặt phẳng (α) vuông góc với 2 mặt phẳng (β) và (P) ((β) và (P) cắt nhau). + Mặt phẳng (α) chứa 2 điểm M, N và tạo với (β) 1 góc là φ. [ads] BÀI 3 : PHƯƠNG TRÌNH ĐƯỜNG THẲNG TRONG KHÔNG GIAN. Nắm vững lý thuyết về tính tương đối giữa đường với đường và đường với mặt kèm theo các phương pháp xác định. Thuộc các công thức tính khoảng cách và góc. Các bài tập trong bài này thường yêu cầu viết phương trình đường thẳng, tìm giao điểm hoặc hình chiếu … ta cần nắm vững các dạng toán viết phương trình đường thẳng sau: + Đường thẳng đi qua 2 điểm. + Đường thẳng đi qua 1 điểm và vuông góc với mặt phẳng cho trước. + Đường thẳng đi qua 1 điểm và song song với 1 đường thẳng cho trước. + Đường thẳng đi qua 1 điểm và vuông góc với 2 đường thẳng cho trước. + Đường thẳng vuông góc và cắt đường thẳng d’ và song song với 1 mặt phẳng cho trước. + Đường thẳng đi qua 1 điểm và vuông góc với 1 đường thẳng cho trước. + Đường thẳng đi qua 1 điểm, cắt đường thẳng a và vuông góc với đường thẳng b. + Đường thẳng đi qua 1 điểm và cắt 2 đường thẳng cho trước. + Đường thẳng vuông góc với mặt phẳng (α) và cắt 2 đường thẳng a và b. + Đường thẳng là hình chiếu của d’ lên mặt phẳng (α). + Đường thẳng d qua M (d và M cùng nằm trong (α) và vuông góc với đường thẳng a (a không thuộc (α)). + Đường thẳng là đường vuông góc chung của 2 đường a và a’ cho trước. BÀI 4 : PHƯƠNG TRÌNH MẶT CẦU. Nắm rõ vị trí tương đối giữa mặt cầu với mặt phẳng và mặt cầu với đường thẳng kèm theo các điều kiện xác định. Các bài tập trong bài này đa số yêu cầu viết phương trình mặt cầu, ta cần nắm vững các bài toán viết phương trình mặt cầu sau: + Mặt cầu có tâm I và đi qua điểm A. + Mặt cầu nhận AB làm đường kính. + Mặt cầu đi qua 3 điểm A, B, C và có tâm I(a;b;c) thuộc mặt phẳng (α). + Mặt cầu ngoại tiếp tứ diện ABCD. + Mặt cầu có tâm I và tiếp xúc với mặt phẳng (α). + Mặt cầu có tâm I và cắt mặt phẳng (α) theo giao tuyến là đường tròn có bán kính r. + Mặt cầu có tâm I và tiếp xúc với đường thẳng a. + Mặt cầu có tâm I và tiếp xúc ngoài mặt cầu có tâm I’, bán kính R’. + Mặt cầu có tâm I tiếp xúc trong với mặt cầu có tâm I’, bán kính R’. + Mặt cầu có tâm I cắt đường thẳng a tại A và B, sao cho AB = m. BÀI 5 : CÁC BÀI TOÁN CỰC TRỊ TRONG TỌA ĐỘ KHÔNG GIAN. Ngoài các bài toán thường gặp như viết phương trình mặt phẳng, đường thẳng, mặt cầu, xác định giao điểm, hình chiếu, vị trí tương đối … chuyên đề này còn xuất hiện các bài toán khó liên quan đến chủ đề cực trị. Kể từ khi chuyển hình thức thi toán sang trắc nghiệm, bài toán cực trị xuất hiện ngày càng nhiều và thường có mặt trong các đề thi tuyển sinh nhằm tăng thêm tính phân loại, chọn lọc học sinh khá giỏi cho các trường, các ngành ở tốp cao. Do vậy, đây là dạng toán quan trọng mà các bạn học sinh muốn vô các ngành có điểm cao cần phải nắm được. + Cho các điểm A, B, C … Tìm điểm H thuộc mặt phẳng (α) hoặc đường thẳng d sao cho nó thỏa mãn điều kiện để các biểu thức sau có giá trị lớn nhất hoặc nhỏ nhất. + Cho 2 điểm A và B không thuộc d, tìm điểm M thuộc mặt phẳng (α) sao cho MA + MB đạt giá trị nhỏ nhất. + Cho 2 điểm A và B không thuộc d, tìm điểm M thuộc d sao cho MA + MB đạt giá trị nhỏ nhất. + Cho 2 điểm A và B, viết phương trình mặt phẳng (α) qua B sao cho (α) cách A một khoảng lớn nhất. + Cho điểm A và đường thẳng d không đi qua A, viết phương trình mặt phẳng (α) qua d sao cho (α) cách A một khoảng lớn nhất. + Cho mặt phẳng (α) và điểm B thuộc (α), viết phương trình đường thẳng a chứa trong (α), đi qua B và cách điểm A không thuộc (α) một khoảng lớn nhất và nhỏ nhất. + Cho điểm A thuộc mặt phẳng (α) và đường thẳng d không song song hoặc nằm trên (α), viết phương trình đường thẳng a chứa trong (α) đi qua A và cách d một khoảng lớn nhất. + Cho hai đường thẳng a và b không song song nhau, viết phương trình mặt phẳng (α) chứa a và tạo với b một góc lớn nhất. + Cho điểm A thuộc mặt phẳng (α) và đường thẳng a không song song hoặc nằm trong (α), viết phương trình đường thẳng b chứa trong (α) và qua A sao cho tạo với a một góc lớn nhất và nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Tổng hợp câu hỏi trắc nghiệm hay chương tọa độ không gian - Nguyễn Quang Hưng, Nguyễn Thành Tiến
Tài liệu gồm 32 trang tổng hợp câu hỏi trắc nghiệm hay và khó chương tọa độ không gian, các bài tập được trích trong đây chủ yếu là những bài được lấy trong các đề thi thử, bài giải được làm dưới cách chi tiết. Trích dẫn tài liệu : + Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 1; 0), B (0; 1; 1), C (1; 0; 1). Tìm hợp tất cả các điểm M trên mặt phẳng Oxz sao cho vtMA.vtMB + vtMC^2 = 2. A. Một đường thẳng B. Một đường tròn C. Một đường elip D. Không xác định được [ads] + Trong không gian với hệ tọa độ xyz, cho điểm A(1;2; -3) và cắt mặt phẳng (P): 2x + 2y – z + 9 = 0. Đường thẳng đi qua A và có véctơ chỉ phương u (3;4; -4) cắt (P) tại B. Điểm M thay đổi trong (P) sao cho M luôn nhìn đoạn AB dưới một góc 90 độ. Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau? A. J (-3; 2; 7)   B. H(-2; -1;3) C. K (3; 0; 15)   D. I (-1; -2; 3) + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x^2 + (y – 4)^2 + z^2 = 5. Tìm tọa độ điểm A thuộc tia Oy. Biết rằng ba mặt phẳng phân biệt qua A và đôi một vuông góc cắt mặt cầu theo thiết diện là ba hình tròn có tổng diện tích là 11π.
Chuyên đề trắc nghiệm phương pháp tọa độ trong không gian - Ngô Nguyên
Tài liệu gồm 100 trang phân dạng và tuyển chọn các bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian. Nội dung tài liệu gồm: + Chủ đề 1. Các phép toán về tọa độ véc tơ. Xác định điểm – một số tính chất hình học Dạng 1: Chứng minh A, B, C là ba đỉnh tam giác Dạng 2: Tìm D sao cho ABCD là hình bình hành Dạng 3: Chứng minh ABCD là một tứ diện + Chủ đề 2. Phương trình mặt cầu Dạng 1: Biết trước tâm I và bán kính R Dạng 2: Mặt cầu đường kính AB Dạng 3: Mặt cầu tâm I tiếp xúc mặt phẳng (α) Dạng 4: Mặt cầu ngoại tiếp tứ diện ABCD Dạng 5: Mặt cầu đi qua A, B, C và tâm I thuộc (α) Dạng 6: Mặt phẳng tiếp xúc mặt cầu tại A [ads] + Chủ đề 3. Phương trình mặt phẳng Dạng 1. Mặt phẳng (α) đi qua M và có vectơ pháp tuyến n Dạng 2. Mặt phẳng qua 3 điểm A, B, C Dạng 3. Mặt phẳng trung trực đoạn AB Dạng 4. Mặt phẳng (α) qua M và vuông góc đường thẳng d (hoặc AB) Dạng 5. Mp (α) qua M và song song (α): Ax + By + Cz + D = 0 Dạng 6. Mp(α) chứa (d) và song song (d’) Dạng 7. Mp(α) qua M, N và vuông góc (β) Dạng 8. Mp(α) chứa (d) và đi qua M Dạng 9. Mp(α) đi qua M và vuông góc với hai mặt phẳng (β), (γ) cho trước Dạng 10. Mặt Phẳng (α) chứa hai đường thẳng Δ1, Δ2 cắt nhau + Chủ đề 4. Phương trình đường thẳng Dạng 1. Viết phương trình đường thẳng (d) đi qua M và có vectơ chỉ phương u Dạng 2. Đường thẳng d qua A và song song (α) Dạng 3. Đường thẳng (d) qua A và vuông góc mp(α) Dạng 4. PT d’ hình chiếu của d lên (α) Dạng 5. Đường thẳng (d) qua A và vuông góc 2 đường thẳng d1 và d2 Dạng 6. Phương trình đường vuông góc chung của d1 và d2 Dạng 7. PT d qua A và d cắt d1, d2 Dạng 8. PT d // Δ và cắt d1, d2 Dạng 9. PT d qua A và vuông góc với d1, cắt d2 Dạng 10: PT d ⊥ (P) cắt d1, d2
111 câu hỏi trắc nghiệm về mặt phẳng trong Oxyz - Hứa Lâm Phong
Tài liệu gồm 12 trang với 111 câu hỏi trắc nghiệm về mặt phẳng trong Oxyz do thầy Hứa Lâm Phong biên soạn. Trích dẫn tài liệu : + Trong không gian Oxyz, cho mặt phẳng (P): 2x – 2y – z – 4 = 0 và mặt cầu (S): x^2 + y^2 + z^2 – 2x – 4y – 6z – 11 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi là? + Cho mặt phẳng (P): 3x + 4y + 12 = 0 và mặt cầu (S): x^2 + y^2 + (z – 2)^2 = 1. Khẳng định nào sau đây là đúng? A. (P) đi qua tâm của mặt cầu (S) B. (P) tiếp xúc với mặt cầu (S) [ads] C. (P) cắt mặt cầu (S) theo một đường tròn và mặt phẳng (P) không qua tâm của (S) D. (P) không có điểm chung với mặt cầu (S) + Khẳng định nào sau đây sai ? A. Nếu n là vectơ pháp tuyến của mặt phẳng thì kn với k khác 0 cũng là vectơ pháp tuyến của mặt phẳng đó. B. Mặt phẳng (P) có phương trình tổng quát là ax + by + cz + d = 0 với a, b, c không đồng thời bằng 0 thì nó có một vectơ pháp tuyến là n(a; b; c). C. Nếu a, b có giá song song hoặc nằm trong mặt phẳng thì tích có hướng của hai vectơ a, b gọi là vectơ pháp tuyến của mặt phẳng. D. Hai mặt phẳng vuông góc với nhau khi và chỉ khi hai vectơ pháp tuyến tương ứng của chúng vuông góc với nhau.
100 câu hỏi trắc nghiệm về tọa độ điểm trong Oxyz - Hứa Lâm Phong
Tài liệu gồm 9 trang với 100 câu hỏi trắc nghiệm về tọa độ điểm trong Oxyz do thầy Hứa Lâm Phong biên soạn. Trích dẫn tài liệu : 1. Trong không gian Oxyz, cho tam giác ABC với A(1;-4;2), B(-3;2;1), C(3;-1;4). Khi đó trọng tâm G của tam giác ABC là? 2. Trong không gian với hệ tọa độ Oxyz, điểm nào sau đây nằm trên trục Oz? 3. Cho ba điểm A(2;0;2), B(1;2;3), C(x;y-3;7). Biết rằng x; y là giá trị để ba điểm A,B,C thẳng hàng. Khi đó tổng x + y bằng? [ads]