Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán nón - trụ - cầu thường gặp trong kỳ thi THPTQG

Nhằm hỗ trợ các em học sinh lớp 12 trong quá trình học tập chương trình Hình học 12 chương 2 và ôn tập thi THPT Quốc gia môn Toán năm học 2019 – 2020, giới thiệu đến các em tài liệu tuyển tập các dạng toán nón – trụ – cầu thường gặp trong kỳ thi THPTQG. Tài liệu gồm 127 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển chọn các bài toán trắc nghiệm khối tròn xoay, mặt nón, mặt trụ, mặt cầu có đáp án và lời giải chi tiết, các bài tập được trích từ các đề thi THPT Quốc gia môn Toán các năm 2017 – 2018 – 2019. Mục lục tài liệu các dạng toán nón – trụ – cầu thường gặp trong kỳ thi THPTQG: CHỦ ĐỀ 1 . HÌNH NÓN – KHỐI NÓN PHẦN A . CÂU HỎI Dạng 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện (Trang 1). Dạng 2. Thể tích (Trang 3). Dạng 3. Khối tròn xoay nội, ngoại tiếp khối đa diện (Trang 6). Dạng 4. Bài toán thực tế (Trang 8). Dạng 5. Bài toán cực trị (Trang 9). PHẦN B . ĐÁP ÁN THAM KHẢO Dạng 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện (Trang 10). Dạng 2. Thể tích (Trang 17). Dạng 3. Khối tròn xoay nội, ngoại tiếp khối đa diện (Trang 24). Dạng 4. Bài toán thực tế (Trang 29). Dạng 5. Bài toán cực trị (Trang 32). [ads] CHỦ ĐỀ 2 . HÌNH TRỤ – KHỐI TRỤ PHẦN A . CÂU HỎI Dạng 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện (Trang 1). Dạng 2. Thể tích (Trang 3). Dạng 3. Khối tròn xoay nội, ngoại tiếp khối đa diện (Trang 4). Dạng 4. Bài toán thực tế (Trang 5). Dạng 5. Bài toán cực trị (Trang 8). PHẦN B . ĐÁP ÁN THAM KHẢO Dạng 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện (Trang 9). Dạng 2. Thể tích (Trang 14). Dạng 3. Khối tròn xoay nội, ngoại tiếp khối đa diện (Trang 15). Dạng 4. Bài toán thực tế (Trang 19). Dạng 5. Bài toán cực trị (Trang 23). [ads] CHỦ ĐỀ 3 . MẶT CẦU – KHỐI CẦU PHẦN A . CÂU HỎI Dạng 1. Diện tích xung quanh, bán kính (Trang 1). Dạng 2. Thể tích (Trang 2). Dạng 3. Khối cầu nội tiếp, ngoại tiếp khối đa diện (Trang 3). Dạng 3.1 Khối cầu nội tiếp, ngoại tiếp khối lăng trụ (Trang 3). Dạng 3.2 Khối cầu nội tiếp, ngoại tiếp khối chóp (Trang 4). Dạng 3.2.1 Khối chóp có cạnh bên vuông góc với đáy (Trang 4). Dạng 3.2.2 Khối chóp có mặt bên vuông góc với đáy (Trang 7). Dạng 3.2.3 Khối chóp đều (Trang 8). Dạng 3.2.4 Khối chóp khác (Trang 8). Dạng 4. Bài toán thực tế, cực trị (Trang 10). PHẦN B . ĐÁP ÁN THAM KHẢO Dạng 1. Diện tích xung quanh, bán kính (Trang 11). Dạng 2. Thể tích (Trang 12). Dạng 3. Khối cầu nội tiếp, ngoại tiếp khối đa diện (Trang 13). Dạng 3.1 Khối cầu nội tiếp, ngoại tiếp khối lăng trụ (Trang 13). Dạng 3.2 Khối cầu nội tiếp, ngoại tiếp khối chóp (Trang 17) Dạng 3.2.1 Khối chóp có cạnh bên vuông góc với đáy (Trang 17) Dạng 3.2.2 Khối chóp có mặt bên vuông góc với đáy (Trang 29). Dạng 3.2.3 Khối chóp đều (Trang 36). Dạng 3.2.4 Khối chóp khác (Trang 39). Dạng 4. Bài toán thực tế, cực trị (Trang 49). CHỦ ĐỀ 4 . MỘT SỐ BÀI TOÁN TỔNG HỢP KHỐI TRÒN XOAY

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hình học không gian dành cho học sinh trung bình - yếu
Kỳ thi THPT Quốc Gia 2016 – 2017 đã cận kề, từ nhu cầu thực tế ôn luyện của các học sinh trung bình và yếu, các thầy cô giáo ở khắp mọi miền trong cả nước đã biên soạn bộ tài liệu ÔN TẬP KỲ THI THPTQG dành cho đối tượng học sinh trung bình. Chuyên đề HÌNH HỌC KHÔNG GIAN được nhóm 04 thầy cô: Lê Văn Định, Dương Phước Sang, Phùng Hoàng Em, Trần Thị Thu Thảo biên soạn nội dung. Hỗ trợ hình học thầy Lê Quang Hòa. Chuyên đề bao gồm 04 nội dung chính: + Phần 1: Đa diện – Thể tích khối đa diện + Phần 2: Mặt nón – Khối nón + Phần 3: Mặt cầu – Khối cầu + Phần 4: Mặt trụ – Khối trụ [ads] Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình. Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình.
Chuyên đề mặt nón - mặt trụ - mặt cầu - Trần Đình Cư
Tài liệu gồm 58 trang với lý thuyết và bài tập trắc nghiệm chủ đề mặt nón, mặt trụ và mặt cầu, các bài tập đều có đáp án và lời giải chi tiết. HÌNH NÓN, MẶT NÓN, KHỐI NÓN 1. Định nghĩa mặt nón Cho đường thẳng Δ. Xét một đường thẳng d cắt Δ tại O và không vuông góc với Δ. Mặt tròn xoay sinh bởi đường thẳng d như thế khi quay quanh Δ gọi là mặt nón tròn xoay (hay đơn giản là mặt nón). 2. Hình nón tròn xoay Cho ΔOIM vuông tại I quay quanh cạnh góc vuông OI thì đường gấp khúc OIM tạo thành một hình, gọi là hình nón tròn xoay (gọi tắt là hình nón). 3. Công thức diện tích và thể tích của hình nón Cho hình nón có chiều cao là h, bán kính đáy r và đường sinh là l thì có: Diện tích xung quanh: Sxq=π.r.l Diện tích đáy (hình tròn): Sd = πr^2 Diện tích toàn phần hình tròn: S = Sd + Sxq Thể tích khối nón: V = 1/3.π.r^2.h 4. Tính chất [ads] MẶT TRỤ – HÌNH TRỤ VÀ KHỐI TRỤ 1. Mặt trụ Mặt trụ là hình tròn xoay sinh bởi đường thẳng l khi xoay quanh đường thẳng song song và cách l một khoảng R. Lúc đó, được gọi là trục, R gọi là bán kính, l gọi là đường sinh. Mặt trụ là tập hợp tất cả những điểm cách đường thẳng cố định một khoảng R không đổi. 2. Hình trụ Hình trụ là hình giới bạn bởi mặt trụ và hai đường tròn bằng nhau, là giao tuyến của mặt trụ và 2 mặt phẳng vuông góc với trục. Hình trụ là hình tròn xoay khi sinh bởi bốn cạnh của hình một hình chữ nhật khi quay xung quanh một đường trung bình của hình chữ nhật đó. 3. Khối trụ Khối trụ là hình trụ cùng với phần bên trong của hình trụ đó. MẶT CẦU – HÌNH CẦU VÀ KHỐI CẦU 1. Định nghĩa và các khái niệm 2. Vị trí tương đối giữa mặt cầu và mặt phẳng 3. Một sô dạng mặt cầu ngoại tiếp thường gặp Dạng 1. Hình chóp có các đỉnh nhìn hai đỉnh còn lại dưới 1 góc vuông Dạng 2. Hình chóp có các cạnh bên bằng nhau Dạng 3. Mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy Dạng 4. Mặt cầu ngoại tiếp hình chóp có mặt bên vuông góc với mặt đáy
Phương pháp giải nhanh bài toán mặt cầu ngoại tiếp hình chóp - Hoàng Trọng Tấn
Tài liệu Phương pháp giải nhanh bài toán mặt cầu ngoại tiếp hình chóp – Hoàng Trọng Tấn gồm 10 trang với các công thức giải nhanh kèm theo ví dụ minh họa và 27 bài toán trắc nghiệm áp dụng. Loại 1: Hình chóp có các đỉnh nhìn đoạn thẳng nối 2 đỉnh còn lại dưới 1 góc vuông Gọi d là độ dài đoạn thẳng trên thì ta có bán kính mặt cầu ngoại tiếp là: R = d/2 Loại 2 : Hình chóp đều Gọi h là độ cao hình chóp và k là chiều dài cạnh bên thì ta có bán kính mặt cầu là: R = k^2/2h [ads] Loại 3 : Hình chóp có cạnh bên vuông góc với đáy Gọi h là chiều cao hình chóp và Rđ là bán kính của đáy thì bán kính mặt cầu: R = √(Rđ^2 + (h/2)^2) Loại 4: Hình chóp có mặt bên vuông góc với đáy Gọi h là chiều cao hình chóp và Rb, Rđ là bán kính của mặt bên, mặt đáy, GT là độ dài giao tuyến của mặt bên và đáy thì bán kính mặt cầu: R = √(Rb^2 + Rđ^2 – GT^2/4) Bài tập vận dụng
Tuyển tập các bài toán hình học không gian - Châu Ngọc Hùng
Tuyển tập các bài toán hình học không gian được phân dạng theo khối hình, tài liệu gồm 75 trang do thầy Châu Ngọc Hùng biên soạn. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình thoi; hai đường chéo AC = 2√3a, BD = 2a và cắt nhau tại O; hai mặt phẳng (S AC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ điểm O đến mặt phẳng (S AB) bằng a = √3/4, tính thể tích khối chóp S.ABCD theo a. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng S A và mặt phẳng đáy bằng 45 độ, góc giữa mặt phẳng (SAB) và mặt phẳng đáy bằng 60 độ. Tính thể tích khối chóp S.ABCD, biết rằng khoảng cách giữa hai đường thẳng CD và SA bằng a√6. + Cho lăng trụ tam giác ABC.A1B1C1 có tất cả các cạnh bằng a, góc tạo bởi cạnh bên và mặt đáy bằng 30 độ. Hình chiếu vuông góc H của đỉnh A trên mặt phẳng (A1B1C1) thuộc đường thẳng B1C1. Tính thể tích khối lăng trụ ABC.A1B1C1 và tính khoảng cách giữa hai đường thẳng AA1 và B1C1 theo a.