Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán 11 năm học 2019 - 2020 trường THPT thị xã Quảng Trị

Ngày 12 tháng 06 năm 2020, trường THPT thị xã Quảng Trị tổ chức kỳ thi chọn học sinh giỏi văn hóa lớp 11 môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán 11 năm học 2019 – 2020 trường THPT thị xã Quảng Trị gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài thi là 180 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi chọn HSG Toán 11 năm học 2019 – 2020 trường THPT thị xã Quảng Trị : + Một tổ gồm 10 học sinh gồm 6 học sinh nam và 4 học sinh nữ trong đó có hai học sinh nữ tên Trang và Thủy. Xếp ngẫu nhiên 10 học sinh trên thành một hàng ngang. Tính xác suất để xếp được một hàng ngang mà hai học sinh nữ Trang và Thủy luôn đứng cạnh nhau, đồng thời các học sinh nữ còn lại không đứng cạnh nhau và cũng không đứng cạnh Trang và Thủy. + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC = 30 độ và BC = 2a. Gọi H là hình chiếu vuông góc của A lên BC. Biết hai mặt phẳng (SHA) và (SBC) cùng vuông góc với mặt phẳng (ABC), đồng thời SA tạo với mặt phẳng (ABC) một góc bằng 60 độ. a) Tính góc tạo bởi SA và mặt phẳng (SBC). b) Tính khoảng cách từ B đến mặt phẳng (SAC) theo a. [ads] + Trong mặt phẳng Oxy, cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A trên BC, các điểm M, N lần lượt là trung điểm của HB và HC; điểm K là trực tâm tam giác AMN. a) Gọi I là trung điểm của AH. Chứng minh rằng K là trung điểm của IH. b) Tìm tọa độ điểm A; biết M(2;-1), K(-1/2;1/2) và điểm A nằm trên đường thẳng x + 2y + 4 = 0 đồng thời điểm A có tung độ âm.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 11 lần 2 năm 2020 - 2021 trường THPT Đồng Đậu - Vĩnh Phúc
Đề thi HSG Toán 11 lần 2 năm học 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc gồm 02 trang với 10 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 11 lần 2 năm 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc : + Một thợ thủ công muốn vẽ trang trí trên một hình vuông kích thước 4m x 4m, bằng cách vẽ một hình vuông mới với các đỉnh là trung điểm các cạnh của hình vuông ban đầu và tô kín màu lên hai tam giác đối diện (như hình vẽ). Quá trình vẽ và tô theo qui luật đó được lặp lại 5 lần. Tính số tiền nước sơn để người thợ thủ công đó hoàn thành trang trí hình vuông như trên? Biết tiền nước sơn để sơn 1m2 là 50.000 đồng. + Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD, có đỉnh A(-3;1), đỉnh C nằm trên đường thẳng d: x – 2y – 5 = 0. Trên tia đối của tia CD lấy điểm E sao cho CE = CD, biết N(6;-2) là hình chiếu vuông góc của D lên đường thẳng BE. Xác định tọa độ các đỉnh còn lại của hình chữ nhật ABCD. + Cho hình hộp ABCD.A’B’C’D’. Trên các đoạn thẳng AD’ và C’D lần lượt lấy hai điểm M, N sao cho đường thẳng MN song song với đường thẳng nối tâm của hình bình hành ABB’A’ và trung điểm của cạnh BC. Tính tỷ số MN/A’C.
Đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2020 - 2021 sở GDĐT Bình Định
Thứ Năm ngày 18 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 THPT năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2020 – 2021 sở GD&ĐT Bình Định gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2020 - 2021 sở GDĐT Lạng Sơn
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 11 THPT năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Lạng Sơn; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2021. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2020 – 2021 sở GD&ĐT Lạng Sơn : + Giả sử P(x) = (1 + 3x)^n. Biết rằng a2 + a3 = 405(n – 1), tính giá trị của a6. + Cho tập hợp A = {0; 1; 2; 3; 4; 5; 6; 7}. Gọi S là tập hợp các số tự nhiên gồm 8 chữ số đôi một khác nhau lấy từ A. Tính xác suất để lấy được số tự nhiên mà tổng 4 chữ số đầu bằng tổng 4 chữ số cuối. + Cho hình chóp tam giác S.ABC có đáy là tam giác đều cạnh bằng 2a. Đường thẳng SA vuông góc với mặt phẳng (ABC). Gọi M là trung điểm của AB, H là hình chiếu vuông góc của C lên SB và góc tạo bởi đường thẳng AB và mặt phẳng (HCM) bằng 60°. a) Tính diện tích tam giác HCM. b) Tính sin của góc tạo bởi MH và SC.
Đề thi HSG Toán 11 cấp trường năm 2020 - 2021 trường Liễn Sơn - Vĩnh Phúc
Đề thi HSG Toán 11 cấp trường năm học 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc dành cho học sinh THPT không chuyên, đề gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG Toán 11 cấp trường năm 2020 – 2021 trường Liễn Sơn – Vĩnh Phúc : + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và các cạnh bên đều bằng a. Gọi M là điểm nằm trên SB sao cho SM = 1/3.SB. a. Gọi (P) là mặt phẳng chứa CM và song song với SA. Tính theo a diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD. b. E là một điểm thay đổi trên cạnh AC. Xác định vị trí điểm E để ME vuông góc với CD. + Xung quanh bờ ao của gia đình bác Nam trồng 20 cây chuối. Do không còn phù hợp bác muốn thay thế để trồng bưởi, lần đầu bác chặt ngẫu nhiên 4 cây. Tính xác suất để trong 4 cây bác Nam chặt không có hai cây nào gần nhau. + Cho a, b, c là độ dài 3 cạnh của một tam giác có chu vi bẳng 1. Tìm giá trị lớn nhất của biểu thức T.