Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán THCS năm 2023 - 2024 phòng GDĐT Buôn Ma Thuột - Đắk Lắk

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp thành phố năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Buôn Ma Thuột, tỉnh Đắk Lắk; kỳ thi được diễn ra vào thứ Hai ngày 26 tháng 02 năm 2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi Toán THCS năm 2023 – 2024 phòng GD&ĐT Buôn Ma Thuột – Đắk Lắk : + Công ty X và công ty Y là hai công ty có uy tín tại Hà Nội mà anh Minh đang có nhu cầu xin vào làm việc. Cả hai công ty đều có chế độ thu hút người tài và đưa ra hình thức trả lương trong thời gian thử việc như sau: Công ty X: Anh Minh nhận được 1500 USD ngay khi ký hợp đồng thử việc và mỗi tháng sẽ được trả lương 1800 USD. Công ty Y: Anh Minh nhận được 2500 USD ngay khi ký hợp đồng thử việc và mỗi tháng sẽ được trả lương 1600 USD. Em hãy tư vấn giúp anh Minh lựa chọn công ty nào để thử việc sao cho tổng số tiền thử việc nhận được là lớn nhất. Biết thời gian thử việc của cả hai công ty đều từ 3 tháng đến 8 tháng. + Cho điểm A nằm ngoài đường tròn (O; R). Từ A kẻ hai tiếp tuyến AB, AC và cát tuyến ADE không đi qua tâm đường tròn (O; R) (B, C là tiếp điểm; D nằm giữa A và E). Tiếp tuyến tại D của đường tròn (O) cắt AB, AC theo thứ tự tại I và K. Gọi H là giao điểm của AO và BC. 1. Chứng minh BAO = BCO. 2. Chứng minh AH AD AE AO. 3. Tính số đo góc IOK khi OA = 2R. 4. Qua điểm O kẻ đường thẳng vuông góc với OA cắt AB tại P và cắt AC tại Q. Chứng minh rằng IP + KQ ≥ PQ. + Cho tam giác ABC cân đỉnh A. Gọi O là trung điểm của BC. Đường tròn (O) tiếp xúc với AB ở E, tiếp xúc với AC ở F. Điểm H chạy trên cung nhỏ EF tiếp tuyến của đường tròn tại H cắt AB, AC lần lượt tại M, N. Xác định vị trí của điểm H để diện tích tứ giác BMNC đạt giá trị nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2014 - 2015 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho biểu thức x x x x A 2 4 3 2 với x 0 1 x. a) Rút gọn biểu thức A. b) Tìm giá trị lớn nhất của biểu thức A. + Cho hàm số bậc nhất 2 y 1 3m x 5m 2 (1) và đường thẳng d: y 2x 3. a) Tìm giá trị của tham số m để hàm số (1) là hàm số đồng biến trên. b) Tìm giá trị của tham số m để đồ thị hàm số 2 y 1 3m x 5m 2 và đường thẳng d cắt nhau tại một điểm trên trục tung. c) Tìm trên đường thẳng d những điểm có tọa độ thoả mãn đẳng thức 2 2 x y xy 2 40. + Cho m là một số nguyên. Chứng minh rằng: a) 5 m m chia hết cho 30. b) Biểu thức 532 7 30 6 2 10 mmm m P là một số nguyên.
Đề học sinh giỏi huyện Toán 9 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho hai đường thẳng y = 6 + 2x và y = 3 – x. a. Tìm toạ độ giao điểm M của hai đường thẳng trên. b. Gọi giao điểm của hai đường thẳng trên với trục hoành theo thứ tự là A và B. Tính diện tích tam giác MAB. + Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B). a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn. b) Chứng minh: MA2 = MD.MB c) Vẽ CH vuông góc với AB (H AB). Chứng minh rằng MB đi qua trung điểm của CH. + Cho 4 số thực a b c d thỏa mãn điều kiện: ac 2.(b + d) Chứng minh rằng có ít nhất một trong các bất đẳng thức sau là sai: a 4b 2 c 4d.
Đề học sinh giỏi huyện Toán 9 năm 2012 - 2013 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho tam giác nhọn ABC BC a CA b AB c. Chứng minh rằng: 222 a b c bc cosA. + Cho nửa đường tròn (O) đường kính BC. Trên tia đối của tia CB lấy điểm A, qua A kẻ tiếp tuyến AF với đường tròn (O) ( F là tiếp điểm). Tia AF cắt tia tiếp tuyến Bx của nửa đường tròn (O) tại D (tia tiếp tuyến Bx nằm trong nửa mặt phẳng bờ BC chứa nửa đường tròn (O)). Gọi H là giao điểm của BF với DO; K là giao điểm thứ hai của DC với nửa đường tròn (O). a) Chứng minh rằng AO.AB = AF.AD. b) Chứng minh DHK DCO. c) Kẻ OM vuông góc với BC (M thuộc đoạn AD). Chứng minh rằng 1 BD DM DM AM. + Cho hai số thực dương x, y thay đổi thỏa mãn điều kiện 3 4 x y. Tìm giá trị nhỏ nhất của biểu thức 1 1 A x xy.