Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện môn Toán năm 2022 2023 phòng GD ĐT Di Linh Lâm Đồng

Nội dung Đề học sinh giỏi huyện môn Toán năm 2022 2023 phòng GD ĐT Di Linh Lâm Đồng Bản PDF - Nội dung bài viết Đề học sinh giỏi môn Toán năm 2022-2023 phòng GD&ĐT Di Linh, Lâm Đồng Đề học sinh giỏi môn Toán năm 2022-2023 phòng GD&ĐT Di Linh, Lâm Đồng Chào quý thầy cô và các em học sinh lớp 9, đề thi chọn học sinh giỏi môn Toán cấp huyện năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Di Linh, tỉnh Lâm Đồng sẽ diễn ra vào ngày 10 tháng 11 năm 2022. Một số câu hỏi thú vị trong đề thi: 1. Một con Robot được thiết kế để di chuyển theo quy tắc cố định. Nếu robot xuất phát từ vị trí A0 và đi theo quy luật cụ thể để đến vị trí A2022, hỏi khoảng cách giữa điểm xuất phát và điểm đến của con Robot là bao nhiêu? 2. Một đoàn từ thiện phát 22 quyển vở cho các học sinh có hoàn cảnh khó khăn. Nếu bớt đi một phần quà thì có thể chia đều tất cả số vở cho các phần quà mà vẫn còn thừa 1 quyển. Hỏi đoàn từ thiện ban đầu có bao nhiêu quyển vở, biết rằng mỗi phần quà không quá 30 quyển? 3. Cho tam giác vuông ABC có đường cao AH, đường trung tuyến BM và đường phân giác CK cắt nhau tại E. Chứng minh rằng chiều cao hình thang tam giác AHCK bằng nửa tổng các cạnh góc vuông AC và BC. Chúc các em học sinh sẵn sàng và tự tin để làm bài thi tốt nhất!

Nguồn: sytu.vn

Đọc Sách

Đề chọn ĐT thi HSG tỉnh Toán 9 năm 2022 - 2023 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn Đề chọn ĐT thi HSG tỉnh Toán 9 năm 2022 – 2023 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Cho hai số tự nhiên a, b thỏa mãn 3a2 + a = 4b2 + b. Chứng minh a – b và 4a + 4b + 1 đều là số chính phương. + Cho tam giác ABC nhọn (AB < AC). Đường tròn tâm I nội tiếp tam giác ABC lần lượt tiếp xúc với BC, CA, AB tại D, E, F. Gọi M là trung điểm của BC. Gọi N là giao điểm của ID và EF. Qua N kẻ đường thẳng song song với BC cắt AB, AC tại Q và P. Qua A kẻ đường thẳng song song với BC cắt EF tại K. a) Chứng minh IP = IQ. b) Chứng minh IAM = FKI. c) Gọi S, L, V lần lượt là giao điểm của AI, BI, CI với BC, CA và AB. Chứng minh. + Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng tồn tại một số có dạng 111…11 chia hết cho p.
Đề HSG Toán 9 vòng 3 năm 2022 - 2023 phòng GDĐT Nghi Lộc - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 vòng 3 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 07 tháng 12 năm 2022.
Đề HSG cấp huyện Toán 9 năm 2022 - 2023 phòng GDĐT Quỳnh Lưu - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quỳnh Lưu, tỉnh Nghệ An; kỳ thi được diễn ra vào ngày 08 tháng 12 năm 2022. Trích dẫn Đề HSG cấp huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Quỳnh Lưu – Nghệ An : + Cho các số thực dương a, b, c thỏa mãn: abc = 1. Tìm giá trị lớn nhất của biểu thức Q. + Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, K lần lượt là chân đường vuông góc kẻ từ H đến AB, AC a) Chứng minh: AD.AB = AK.AC b) Chứng minh rằng: DK là tiếp tuyến của đường tròn ngoại tiếp tam giác KHC. + Cho tam giác ABC vuông cân tại A. Trên hai cạnh AB, AC lấy hai điểm M, N sao cho AM = CN. Xác định vị trí các điểm M, N trên các cạnh AB, AC sao cho MN đạt giá trị nhỏ nhất.