Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra lớp 10 môn Toán lần 2 năm 2022 2023 trường THPT chuyên Vĩnh Phúc

Nội dung Đề kiểm tra lớp 10 môn Toán lần 2 năm 2022 2023 trường THPT chuyên Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chuyên đề môn Toán lớp 10 lần 2 năm học 2022 – 2023 trường THPT chuyên Vĩnh Phúc, tỉnh Vĩnh Phúc; đề thi mã đề 132, hình thức trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài: 90 phút (không kể thời gian giao đề). Trích dẫn Đề kiểm tra Toán lớp 10 lần 2 năm 2022 – 2023 trường THPT chuyên Vĩnh Phúc : + Một người đi bộ xuất phát từ B trên một bờ sông (coi là đường thẳng) với vận tốc 6 km/h để gặp một người chèo thuyền xuất phát cùng lúc từ vị trí A với vận tốc 3 km/h. Nếu người chèo thuyền di chuyển theo đường vuông góc với bờ thì phải đi một khoảng cách AH m 300, trong đó BH m 1400. Tuy nhiên, nếu di chuyển theo cách đó thì hai người không đến cùng một lúc. Để hai người đến cùng một lúc thì mỗi người di chuyển về vị trí C nằm giữa H và B. Thời gian từ khi xuất phát cho đến khi hai người gặp nhau là A. 20 phút. B. 15 phút. C. 10 phút D. 30 phút. + Khi một quả bóng được đá lên, nó sẽ đạt đến độ cao nào đó rồi rơi xuống. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (tính bằng giây) kể từ khi quả bóng được đá lên; h là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1,2m. Sau đó 1 giây, nó đạt độ cao 8,5m và 2 giây sau khi đá lên, nó đạt độ cao 6m. Hỏi sau bao lâu thì quả bóng sẽ chạm đất kể từ khi được đá lên (tính chính xác đến hàng phần trăm? A. 2,56 giây B. 2,57 giây C. 2,58 giây D. 2,59 giây. + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 gam hương liệu, 9 lít nước và 210 gam đường để pha chế nước ngọt loại I và nước ngọt loại II. Để pha chế 1 lít nước ngọt loại I cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Để pha chế 1 lít nước ngọt loại II cần 30 gam đường, 1 lít nước và 1 gam hương liệu. Mỗi lít nước ngọt loại I được 80 điểm thưởng, mỗi lít nước ngọt loại II được 60 điểm thưởng. Hỏi số điểm thưởng cao nhất có thể của mỗi đội trong cuộc thi là bao nhiêu? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra đầu vào lớp 10 môn Toán năm 2022 2023 trường THPT Ngô Gia Tự Đắk Lắk
Nội dung Đề kiểm tra đầu vào lớp 10 môn Toán năm 2022 2023 trường THPT Ngô Gia Tự Đắk Lắk Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng đầu vào môn Toán lớp 10 năm học 2022 – 2023 trường THPT Ngô Gia Tự, tỉnh Đắk Lắk; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút (không kể thời gian giao đề), đề thi có đáp án và lời giải chi tiết. Trích dẫn đề kiểm tra đầu vào Toán lớp 10 năm 2022 – 2023 trường THPT Ngô Gia Tự – Đắk Lắk : + Cho phương trình 2 2 x m x m 2 1 3 0 (1). a) Giải phương trình (1) khi m = 0. b ) Tìm tất cả các giá trị của tham số m để phương trình (1) có nghiệm 1 2 x x thỏa điều kiện: 1 2 x x 3. c) Vẽ đồ thị hàm số 1 2 2 y x. + Cho mảnh ruộng hình chữ nhật có diện tích bằng 1200m2 và chiều dài lớn hơn chiều rộng 10m. Tìm chu vi của mảnh ruộng? + Cho đường tròn tâm (O) đường kính AB cố định, điểm H cố định nằm giữa hai điểm A và O sao cho AH OH. Kẻ dây cung MN AB tại H. Gọi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Gọi K là giao điểm của AC và MN. a) Chứng minh tứ giác BCKH nội tiếp. b) Chứng minh tam giác AMK đồng dạng với tam giác ACM. c) Gọi I là tâm đường tròn ngoại tiếp tam giác MKC, xác định vị trí điểm C để độ dài đoạn IN nhỏ nhất.
Kiểm tra chất lượng lớp 10 môn Toán chuyên đầu năm 2022 2023 chuyên Lê Quý Đôn BR VT
Nội dung Kiểm tra chất lượng lớp 10 môn Toán chuyên đầu năm 2022 2023 chuyên Lê Quý Đôn BR VT Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra chất lượng môn Toán lớp 10 chuyên đầu năm học 2022 – 2023 trường THPT chuyên Lê Quý Đôn, tỉnh Bà Rịa – Vũng Tàu; đề thi gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 180 phút; kỳ thi được diễn ra vào thứ Hai ngày 15 tháng 08 năm 2022. Trích dẫn đề kiểm tra chất lượng Toán lớp 10 chuyên đầu năm 2022 – 2023 chuyên Lê Quý Đôn – BR VT : + Cho tam giác ABC nhọn không cân, nội tiếp đường tròn (O) có các đường cao AD, BE, CF cắt nhau tại H. Gọi A1 là giao điểm của EF và BC; B1 là giao điểm của FD và CA; C1 là giao điểm của DE và AB. 1. Xét M là trung điểm của BC. Chứng minh hai đường thẳng HM, AA1 vuông góc và ba điểm A1, B1, C1 thẳng hàng. 2. Qua E và F ta dựng được hai đường tròn lần lượt tiếp xúc với (O) tại A2 và A3. Tương tự qua F và D dựng được hai đường tròn lần lượt tiếp xúc (O) tại B2 và B3; qua D và E dựng được hai đường tròn lần lượt tiếp xúc (O) tại C2 và C3. Chứng minh các đường thẳng A2A3, B2B3, C2C3, OH đồng quy. + Với mỗi cách viết số 2023 thành tổng của một hoặc nhiều số nguyên dương, ta đặt T là tích các số nguyên dương đó. Tìm giá trị lớn nhất của biểu thức T. + Lớp 10 chuyên Toán lớp 1 của trường THPT chuyên Lê Quý Đôn có 30 học sinh. Vào ngày đầu sinh hoạt lớp, các bạn nhận ra rằng cứ ba học sinh tùy ý trong lớp thì luôn có hai bạn nào đó quen biết nhau (sự quen biết là mối quan hệ hai chiều). Chứng minh rằng luôn có thể tìm ra trong lớp ít nhất 210 cặp, mỗi cặp gồm hai học sinh quen biết nhau.
Đề khảo sát lần 2 lớp 10 môn Toán năm 2021 2022 trường THPT Hàm Long Bắc Ninh
Nội dung Đề khảo sát lần 2 lớp 10 môn Toán năm 2021 2022 trường THPT Hàm Long Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng lần 2 môn Toán lớp 10 năm học 2021 – 2022 trường THPT Hàm Long, tỉnh Bắc Ninh; đề thi mã đề 001 gồm 05 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án mã đề 001 – 002 – 003 – 004 – 005 – 006; kỳ thi được diễn ra vào tháng 04 năm 2022. Trích dẫn đề khảo sát lần 2 Toán lớp 10 năm 2021 – 2022 trường THPT Hàm Long – Bắc Ninh : + Cho hàm số 2 y ax bx c có đồ thị (P) như hình bên. Khẳng định nào sau đây là khẳng định Sai? A. Hàm số đồng biến trên khoảng và nghịch biến trên khoảng B. (P) có đỉnh I(3;4) C. Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 1 D. Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt. + Để chào mừng ngày 26/3, đoàn trường THPT Quế Võ 1 phát động cuộc thi hoa điểm tốt với quy định như sau: Với mỗi điểm 10, 9, 8 tương ứng sẽ được x, y, z bông hoa. Tuần thứ nhất, lớp 10A1 được 7 điểm 10 và 5 điểm 8 nên được thưởng 88 bông hoa. Tuần thứ hai, lớp 10A1 được 1 điểm 10, 10 điểm 9 và 15 điểm 8 nên được thưởng 154 bông hoa. Tuần thứ ba, lớp 10A1 được 15 điểm 10, 1 điểm 9 và 2 điểm 8 nên được thưởng 152 bông hoa. Hỏi nếu lớp 10A1 được 5 điểm 10, 10 điểm 9 và 7 điểm 8 thì lớp 10A1 được thưởng bao nhiêu bông hoa? A. 145 bông B. 148 bông C. 150 bông D. 142 bông. + Khi khai quật hoàng thành Thăng Long, người ta tìm được một mảnh đĩa của một chiếc đĩa phẳng hình tròn bị vỡ. Dựa vào tài liệu các nhà khảo cổ đã biết hình vẽ trên phần còn lại của chiếc đĩa. Họ muốn làm lại một chiếc đĩa mới phỏng theo chiếc đĩa này. Vậy bán kính của chiếc đĩa bằng bao nhiêu? Biết rằng họ lấy ba điểm A, B, C trên cung tròn (mép đĩa) và đo được kết quả như sau AB cm = 4,3 , BC cm = 3,7 , AC cm = 7,5 (Hình vẽ) A. 5,3cm B. 5,7cm C. 6,5cm D. 11,8cm. File WORD (dành cho quý thầy, cô):
Đề khảo sát lớp 10 môn Toán tháng 1 năm 2022 trường THPT Gia Bình 1 Bắc Ninh
Nội dung Đề khảo sát lớp 10 môn Toán tháng 1 năm 2022 trường THPT Gia Bình 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng môn Toán lớp 10 tháng 1 năm 2022 trường THPT Gia Bình số 1, tỉnh Bắc Ninh; đề thi có mã 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề được dành cho học sinh các lớp 10A1 – 10A2 – 10A4 – 10A5. Trích dẫn đề khảo sát Toán lớp 10 tháng 1 năm 2022 trường THPT Gia Bình 1 – Bắc Ninh : + Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, để nghiên cứu các nhà khảo cổ cần khôi phục lại hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy 3 điểm trên chiếc đĩa và tiến hành đo đạc, được kết quả như hình vẽ (AB = 4,3 cm; BC = 3,7 cm; CA = 7,5 cm). Bán kính của chiếc đĩa này bằng (làm tròn tới hai chữ số sau dấu phẩy). + Trên mặt phẳng tọa độ, trên các tia 0x, 0y lần lượt lấy các điểm A(a;0) và B(0;b) thay đổi sao cho đường thẳng AB luôn tiếp xúc với đường tròn tâm O, bán kính bằng 1. Khi đó, AB có độ dài nhỏ nhất thì giá trị của a b bằng? + Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết độ cao AB m 70, phương nhìn AC tạo với phương nằm ngang một góc 0 30, phương nhìn BC tạo với phương nằm ngang một góc 0 15 30′ (hình vẽ). Độ cao của ngọn núi so với mặt đất gần nhất với giá trị nào sau đây? + Cho các mệnh đề sau đây, với A B là các điểm bất kỳ I) 0 cùng hướng với mọi vectơ. II) 0 cùng phương với mọi vectơ. III) AA 0. IV. AB 0. Có bao nhiêu mệnh đề đúng trong các mệnh đề trên? + Một học sinh tiến hành giải phương trình 5 6 6 x x như sau: Bước 1: Điều kiện 6 5 6 0 5 x x. Bước 2: Phương trình đã cho tương đương với 2 5 6 6 x x 2 x x 17 30 0 2 15 x x. Bước 3: Đối chiếu điều kiện, thấy cả 2 nghiệm thỏa mãn nên phương trình có 2 nghiệm x 2 x 15. Lời giải của học sinh trên: A. Sai từ bước 3. B. Đúng. C. Sai từ bước 1. D. Sai từ bước 2.