Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 11 năm 2019 - 2020 trường chuyên Hạ Long - Quảng Ninh

Ngày … tháng 12 năm 2019, trường THPT chuyên Hạ Long, tỉnh Quảng Ninh tổ chức kì thi kiểm tra chất lượng môn Toán khối 11 giai đoạn cuối học kì 1 năm học 2019 – 2020. Đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT chuyên Hạ Long – Quảng Ninh có mã đề 101, đề gồm 05 trang, có 45 câu trắc nghiệm dành cho cho tất cả các thí sinh, 05 câu dành cho học sinh các lớp không phải chuyên Toán và 05 câu cho các thí sinh các lớp chuyên Toán, thời gian học sinh làm bài là 90 phút. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường chuyên Hạ Long – Quảng Ninh : + Mệnh đề nào sau đây sai? A. Phép tịnh tiến bảo toàn khoảng cách giữa hai điểm bất kì. B. Phép tịnh tiến biến đường thẳng thành đường thẳng song song với đường thẳng đã cho. C. Phép tịnh tiến biến ba điểm thẳng hàng thành ba điểm thẳng hàng. D. Phép tịnh tiến biến tam giác thành tam giác bằng tam giác đã cho. + Một hình (H) có tâm đối xứng nếu và chỉ nếu: A. Tồn tại phép đối xứng tâm biến hình (H) thành chính nó. B. Tồn tại phép đối xứng trục biến hình (H) thành chính nó. C. Hình (H) là hình bình hành. D. Tồn tại phép dời hình biến hình (H) thành chính nó. [ads] + Cho hình chóp S.ABCD có đáy là hình thang ABCD với AB // CD. Khẳng định nào sau đây sai? A. Hình chóp S.ABCD có bốn mặt bên. B. Giao tuyến của hai mặt phẳng (SAC) và (SBD) là SO (O là giao điểm của AC và BD). C. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là SI (với I là giao điểm của AD và BC). D. Giao tuyến của hai mặt phẳng (SAB) và (SAD) là đường trung bình của ABCD. + Cho tứ diện ABCD. Gọi O là một điểm bên trong tam giác BCD và M là một điểm trên đoạn AO. Gọi I, J là hai điểm trên cạnh BC, BD. Giả sử IJ cắt CD tại K, BO cắt IJ tại E và BO cắt CD tại H, ME cắt AH tại F. Giao tuyến của hai mặt phẳng (MIJ) và (ACD) là đường thẳng? + Trong một lớp có 20 học sinh nữ và 15 học sinh nam. Giáo viên chủ nhiệm cần chọn hai học sinh trong đó có một nam và một nữ đi dự Đại hội Đoàn trường THPT chuyên Hạ Long (Quảng Ninh). Hỏi giáo viên có bao nhiêu cách chọn?

Nguồn: toanmath.com

Đọc Sách

Đề học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT chuyên Vị Thanh Hậu Giang
Nội dung Đề học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT chuyên Vị Thanh Hậu Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề học kì 1 Toán lớp 11 năm 2019 – 2020 trường THPT chuyên Vị Thanh – Hậu Giang; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận.
Đề kiểm tra học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Thị xã Quảng Trị
Nội dung Đề kiểm tra học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Thị xã Quảng Trị Bản PDF Sáng thứ Bảy ngày 04 tháng 01 năm 2019, trường THPT Thị xã Quảng Trị, tỉnh Quảng Trị tổ chức kỳ thi kiểm tra chất lượng học kỳ 1 môn Toán lớp 11 năm học 2019 – 2020. Đề kiểm tra HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Thị xã Quảng Trị dành cho học sinh theo học chương trình Toán lớp 11 nâng cao, đề có mã 01 và mã 02, gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Thị xã Quảng Trị : + Một hộp có chứa 9 viên bi xanh được đánh số từ 1 đến 9 và 5 viên bi đỏ được đánh số từ 10 đến 14. Chọn ngẫu nhiên hai viên bi. a) Tính xác suất để chọn được 2 viên bi cùng màu. b) Tính xác suất để chọn được hai viên bi khác màu và tổng 2 số ghi trên hai viên bi là số lẻ. [ads] + Trong mặt phẳng (Oxy) cho điểm A(-2;3) và đường tròn (C) có tâm I(3;-1) bán kính R = 4. a) Tìm tọa độ điểm AA’ là ảnh của điểm A qua phép tịnh tiến Tu với u(4;−1). b) Viết phương trình đường tròn (C’) là ảnh của đường tròn (C) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép đối xứng trục Oy và phép vị tự tâm O tỉ số k = −2. + Tìm số tự nhiên n > 5 trong khai triển (x + 1/2)^n thành đa thức biến x, có hệ số x^6 bằng 4 lần hệ số x^4. File WORD (dành cho quý thầy, cô):
Đề kiểm tra định kỳ lần 1 lớp 11 môn Toán năm 2019 2020 sở GD ĐT Bắc Ninh
Nội dung Đề kiểm tra định kỳ lần 1 lớp 11 môn Toán năm 2019 2020 sở GD ĐT Bắc Ninh Bản PDF Sáng thứ Ba ngày 17 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra định kỳ lần 1 môn Toán lớp 11 năm học 2019 – 2020, nhằm đánh giá tình hình học tập môn Toán của học sinh khối 11 trong giai đoạn học kỳ 1 năm học 2019 – 2020. Đề kiểm tra định kỳ lần 1 Toán lớp 11 năm 2019 – 2020 sở GD&ĐT Bắc Ninh gồm có 01 trang, đề được biên soạn theo hình thức tự luận với 05 bài toán, thời gian học sinh làm bài thi HK1 là 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra định kỳ lần 1 Toán lớp 11 năm 2019 – 2020 sở GD&ĐT Bắc Ninh : + Từ một tập gồm 10 câu hỏi trong đó có 4 câu lý thuyết và 6 câu bài tập, người ta tạo thành các đề thi. Biết rằng một đề thi phải gồm 3 câu hỏi trong 10 câu hỏi trên. a. Hỏi có bao nhiêu cách tạo ra các đề thi. b. Tính xác suất để trong một đề thi phải có ít nhất một câu lý thuyết và một câu bài tập. [ads] + Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x – y – 1 = 0. Viết phương trình đường thẳng d’ là ảnh của đường thẳng d qua phép tịnh tiến theo véctơ u(3;-1). + Cho hình chóp S.ABC. Gọi K, N lần lượt là trung điểm của SA, BC. Điểm M thuộc cạnh SC sao cho SM = SC. a. Tìm giao tuyến của hai mặt phẳng (KMN) và (SBC). b. Tìm giao điểm của đường thẳng AC và mặt phẳng (KMN). c. Gọi H là giao điểm của đường thẳng AB và mặt phẳng (KMN). Chứng minh rằng ba đường thẳng KH, MN, SB đồng quy.
Đề kiểm tra học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Bình Tân TP HCM
Nội dung Đề kiểm tra học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Bình Tân TP HCM Bản PDF Đề kiểm tra học kỳ 1 Toán lớp 11 năm học 2019 – 2020 trường THPT Bình Tân – thành phố Hồ Chí Minh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra học kỳ 1 Toán lớp 11 năm 2019 – 2020 trường THPT Bình Tân – TP HCM : + Từ một hộp đựng 12 viên bi, gồm 3 bi trắng, 4 bi xanh, và 5 bi vàng người ta chọn ngẫu nhiên 4 bi. Tính xác suất để chọn được 4 bi cùng màu. + Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với AB = 2BC = 2CD, đáy lớn AB. a. Xác định (SAD) ∩ (SBC). b. Xác định (SAB) ∩ (SCD). c. Gọi I là trung điểm của SB, chứng minh CI // (SAD). d. Gọi E, F lần lượt là trung điểm của AD và SC. Tìm G = EF ∩ (SBD). Chứng minh G là trọng tâm của tam giác SEC. + Tìm số hạng không chứa x trong khai triển (3x^2 – 1/x^2)^10 (x khác 0). File WORD (dành cho quý thầy, cô):