Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Phú Thọ

Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Phú Thọ Bản PDF - Nội dung bài viết Đề thi Học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022-2023 sở GD&ĐT Phú Thọ Đề thi Học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022-2023 sở GD&ĐT Phú Thọ Chào đón quý thầy cô và các em học sinh lớp 9, đề thi học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 - 2023 sở Giáo dục và Đào tạo tỉnh Phú Thọ đã được Sytu tổ chức. Đề thi bao gồm 16 câu trắc nghiệm (tổng cộng 8 điểm) và 4 câu tự luận (tổng cộng 12 điểm), với thời gian làm bài 150 phút. Trích đoạn từ Đề học sinh giỏi cấp tỉnh Toán lớp 9 năm 2022 - 2023 sở GD&ĐT Phú Thọ: + Đề bài 1: Một chiếc xe khách khởi hành từ Hà Nội và một chiếc xe tải khởi hành từ Vinh cùng một lúc và đi ngược chiều nhau. Sau khi gặp nhau, xe khách chạy thêm 2 giờ thì đến Vinh, còn xe tải chạy thêm 4 giờ 30 phút thì đến Hà Nội. Biết Hà Nội cách Vinh là 300 km, hai xe đi cùng tuyến đường. Hỏi vận tốc của xe khách bằng bao nhiêu? + Đề bài 2: Khi tính toán thể tích căn phòng hình hộp chữ nhật, bạn An đã nhập sai chiều cao vào máy tính. Sau khi thấy kết quả, An cho biết chỉ cần trừ đi 1/3 kết quả đó sẽ chính xác. Nhưng bạn Bình biết rằng để có kết quả đúng, An còn phải cộng thêm 8m3 nữa. Hỏi thể tích căn phòng là bao nhiêu? + Đề bài 3: Một đoàn học sinh đi trải nghiệm ở công viên Văn Lang thành phố Việt Trì bằng ô tô. Nếu mỗi ô tô chở 22 học sinh thì sẽ thừa 1 học sinh. Nếu bớt đi 1 ô tô thì số học sinh được chia đều cho các ô tô còn lại. Biết mỗi ô tô chở không quá 30 học sinh, hỏi đoàn học sinh đó có bao nhiêu học sinh? Với những câu hỏi thú vị và đòi hỏi sự tính toán logic, hy vọng các em học sinh sẽ tự tin và thành công khi tham gia vào bài thi. Chúc mừng các em và hãy cố gắng hết sức!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Bình Định
Ngày 18 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Bình Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Bình Định : + Cho nửa đường tròn tâm O đường kính AB, trên nửa đường tròn (O) lấy điểm C sao cho cung BC nhỏ hơn cung AC, qua C dựng tiếp tuyến với đường tròn (O) cắt AB tại D. Kẻ CH vuông góc với AB (H thuộc AB), kẻ BK vuông góc với CD (K thuộc CD); CH cắt BK tại E. a) Chứng minh BK + BD < EC. b) Chứng minh BH.AD = AH.BD. + Cho tam giác ABC vuông cân tại A và M là điểm di động trên BC (M khác B và C). Hình chiếu của M lên AB, AC lần lượt là H và K. Gọi I là giao điểm của BK và CH. Chứng minh rằng đường thẳng IM luôn đi qua một điểm cố định. + Cho 69 số nguyên dương phân biệt không vượt quá 100. Chứng minh rằng có thể chọn ra từ 69 số đó 4 số sao cho trong chúng có 1 số bằng tổng của 3 số còn lại.
Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Cao Bằng
Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Cao Bằng gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Cao Bằng : + Một đoàn học sinh đi tham quan khu di tích lịch sử hang Pác Bó bằng ô tô. Nếu mỗi xe chỉ chở 22 học sinh thì còn thừa một học sinh. Nếu bớt đi một ô tô thì có thể phân phối đều số học sinh vào các xe còn lại. Hỏi lúc đầu có bao nhiều xe ô tô và có bao nhiêu học sinh đi tham quan, biết rằng số học sinh trên mỗi xe không quá 32 em. + Chứng minh rằng tổng A = 1 + 2 + 2^2 + … + 2^2019 chia hết cho 15. + Cho nửa đường tròn (O) có đường kính AB = 2R; CD là dây cung di động trên nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A; D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F. a) Chứng minh tứ giác CFDH nội tiếp. b) Chứng minh: CF.CA = CH.CB. c) Gọi I là trung điểm của HF. Chứng minh tia OI là tia phân giác của góc COD. d) Chứng minh rằng khi dây cung CD di động trên nửa đường tròn, diện tích tam giác OID có giá trị không đổi.
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Nghệ An
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm học 2020 – 2021 sở GD&ĐT Nghệ An gồm đề bảng A và đề bảng B, đề thi có đáp án và lời giải chi tiết (lời giải được thực hiện bởi các thành viên Tạp Chí Và Tư Liệu Toán Học). Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Nghệ An : + Cho tam giác nhọn ABC có D, E, F lần luợt là chân các đường cao kẻ từ ba đỉnh A, B, C của tam giác. Gọi H là trực tâm tam giác ABC và K là trung điềm của HC. a) Chứng minh rằng 4 điểm E, K, D, F cùng thuộc một dường tròn. b) Đường thẳng đi qua K song song với BC cắt DF tại M. Trên tia DE lấy điểm P sao cho MAP = BAC. Chứng minh rằng SAMF/SAMP = MF/MP (trong đó SAMF, SAMP lần lượt là diện tích các tam giác AMF và AMP). + Cho các số thực dương x, y, z thỏa mãn điều kiện x2 + y2 + z = 3xy. Chứng minh rằng. + Cho đa giác đều có 2021 đỉnh, sao cho mỗi đỉnh của đa giác đó chỉ được tô bằng một trong hai màu xanh hoặc đỏ. Chứng minh rằng tồn tại 3 đỉnh của đa giác đã cho là các đỉnh của một tam giác cân mà các đỉnh đó được tô cùng một màu.
Đề thi học sinh giỏi Toán THCS năm 2020 - 2021 sở GDĐT An Giang
Ngày 20 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh An Giang tổ chức kỳ thi chọn học sinh giỏi cấp Trung học Cơ sở môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi Toán THCS năm 2020 – 2021 sở GD&ĐT An Giang gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút.