Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 12 năm 2019 - 2020 trường chuyên Lam Sơn - Thanh Hóa

Chiều thứ Bảy ngày 24 tháng 12 năm 2019, trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa tổ chức kì thi học kì 1 môn Toán lớp 12 năm học 2019 – 2020. Đề thi HK1 Toán 12 năm học 2019 – 2020 trường THPT chuyên Lam Sơn – Thanh Hóa (đề cơ bản dành cho tất cả học sinh các lớp 12) mã đề 126 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán 12 năm 2019 – 2020 trường chuyên Lam Sơn – Thanh Hóa : + Trong các mệnh đề sau, mệnh đề nào đúng: A. Hình chóp có đáy là hình thoi luôn có mặt cầu ngoại tiếp. B. Hình chóp có đáy là hình thang vuông luôn có mặt cầu ngoại tiếp. C. Hình chóp có đáy là hình tứ giác luôn có mặt cầu ngoại tiếp. D. Hình chóp có đáy là hình tam giác luôn có mặt cầu ngoại tiếp. [ads] + Một cốc thủy tinh hình trụ đựng đầy nước có bán kính đáy là 6cm, chiều cao 10cm. Đặt một khối nón bằng nhôm có bán kính đáy là 9cm, chiều cao 12cm vào lòng cái cốc (tham khảo hình vẽ), sao cho mặt xung quanh của khối nhôm tiếp xúc miệng cốc. Tính thể tích nước còn lại trong cốc. + Cho f(x) là hàm số liên tục và có đạo hàm cấp hai trên R. Mệnh đề nào sau đây sai? A. Nếu f'(x0) = 0, f”(x0) > 0 thì hàm số đạt cực tiểu tại x0. B. Nếu f'(x0) = 0, f”(x0) < 0 thì hàm số đạt cực đại tại x0. C. Hàm số f(x) đạt cực trị tại x0 khi và chỉ khi x0 là nghiệm của đạo hàm. D. Nếu f'(x) đổi dấu khi x qua x0 và f'(x) liên tục tại x0 thì hàm số f(x) đạt cực trị tại x0.

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 12 năm học 2017 - 2018 trường THPT Hồng Thái - Hà Nội
Đề thi HK1 Toán 12 năm học 2017 – 2018 trường THPT Hồng Thái – Hà Nội gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, kỳ thi diễn ra vào ngày 12 tháng 12 năm 2017. Đề thi nhằm đánh giá chất lượng học tập môn Toán của học sinh khối 12 giải đoạn HK1. Bạn đọc có thể theo dõi đề thi HK1 Toán 12 của các trường THPT, sở GD – ĐT trên toàn quốc tại đây (cập nhật hằng ngày)
Đề thi HK1 Toán 12 cơ bản năm học 2017 - 2018 trường THPT Yersin - Lâm Đồng
Đề thi HK1 Toán 12 cơ bản năm học 2017 – 2018 trường THPT Yersin – Lâm Đồng gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Trong các mệnh đề sau, mệnh đề nào đúng? A. Đồ thị hàm số lôgarit nằm bên phải trục tung. B. Đồ thị hàm số mũ luôn cắt trục hoành tại điểm A(1;0). C. Đồ thị hàm số lôgarit luôn qua điểm A(1; a). D. Đồ thị hàm số mũ nhận trục oy làm tiệm cận đứng. [ads] + Bạn Nam vừa trúng tuyển Đại học và được ngân hàng cho vay trong 5 năm học, mỗi năm 8 triệu đồng để nộp học phí, với lãi suất ưu đãi 3.6% trên 1 năm. Hỏi sau khi tốt nghiệp, bạn Nam phải trả cho ngân hàng số tiền cả gốc lẫn lãi là bao nhiêu? (làm tròn theo đơn vị nghìn đồng). A. 44.533.040(VNĐ). B. 40.000.000(VNĐ). C. 49.547.480(VNĐ). D. 5.890.135(VNĐ). + Cho phương trình log3 (4x^2 + 8x + 12) – 2 = 0. Trong các khẳng định sau đây khẳng định nào là đúng? A. Phương trình có hai nghiệm dương. B. Phương trình có một nghiệm âm và một nghiệm dương. C. Phương trình có hai nghiệm âm. D. Phương trình vô nghiệm.
Đề thi HK1 Toán 12 năm học 2017 - 2018 trường THPT Thăng Long - Hà Nội
Đề thi HK1 Toán 12 năm học 2017 – 2018 trường THPT Thăng Long – Hà Nội gồm 4 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án . Nội dung câu hỏi gồm các chủ đề: hàm số và đồ thị, lũy thừa – mũ và logarit, khối đa diện, mặt nón – mặt trụ và mặt cầu và các bài toán thực tế liên quan.
Đề thi HK1 Toán 12 năm học 2017 - 2018 trường THPT Cổ Loa - Hà Nội
Đề thi HK1 Toán 12 năm học 2017 – 2018 trường THPT Cổ Loa – Hà Nội gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 100 phút, kỳ thi diễn ra ngày 12/12/2017. Trích dẫn đề thi : + Cho hàm số y = f(x) = -x^4 – (m + 4)x^3 – 2(m + 2)x^2 + 10 (m là tham số). Với mọi m ≠ -2, khẳng định nào sau đây là đúng? A. Hàm số luôn có một cực tiểu, đồng thời xCT ≤ 0 B. Hàm số luôn có một cực đại, đồng thời xCD ≥ 10 C. Hàm số chỉ có cực đại khi và chỉ khi m > -2 D. Hàm số chỉ có cực tiểu khi và chỉ khi m < -2 [ads] + Đặt a = log3 2, b = log5 2. Hãy biểu diễn log18 20 theo a và b. A. log18 20 = (2ab + 1)/(ab + 2b) B. log18 20 = (2ab + a)/(ab + 2b) C. log18 20 = ab + a)/(ab + b) D. log18 20 = (2b + 1)/(a + 2b) + Cho tứ diễn S.ABC, M và N lần lượt là các điểm thuộc SA và SB sao cho MA = 2SM, SN = 2NB. Tính tỉ số k = VC.ABMN/VSMNC. A. k = 7/9   B. k = 1/9 C. k = 2/9   D. k = 8/9