Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán - Nguyễn Hoàng Việt

Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán gồm 193 trang, được biên soạn bởi thầy giáo Th.S Nguyễn Hoàng Việt (giáo viên Toán trường THPT Lương Thế Vinh, tỉnh Quảng Bình). MỤC LỤC : Câu 39 1. Câu 40 12. + Dạng 1. Sự tương giao biết đồ thị hàm f(x) – loại không có tham số m 12. + Dạng 2. Sự tương giao biết đồ thị hàm f(x) – Loại có tham số m 18. + Dạng 3. Sự tương giao biết đồ thị hàm f(x) – Loại có chứa hàm lượng giác 21. + Dạng 4. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại không có tham số m 23. + Dạng 5. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại có tham số m 32. + Dạng 6. Sự tương giao biết bảng biến thiên hàm số f(x) – Có chứa hàm số lượng giác 34. Câu 41 37. + Dạng 7. Tính nguyên hàm & tích phân sử dụng tính chất và nguyên hàm cơ bản 37. + Dạng 8. Tính nguyên hàm & tích phân bằng phương pháp đổi biến 41. + Dạng 9. Tích phân từng phần 45. + Dạng 10. Tích phân hàm ẩn 50. Câu 42 58. Câu 43 68. + Dạng 11. Tham số m của phương trình bậc hai 68. + Dạng 12. Phương trình đưa về bậc hai 70. + Dạng 13. Tìm số phức thỏa mãn điều kiện cho trước 72. + Dạng 14. Tính toán các yếu tố của số phức (mức vận dụng) 74. + Dạng 15. Bài toán tập hợp điểm 77. Câu 44 81. + Dạng 16. Bài toán min – max với quỹ tích là đường tròn (Phương pháp hình học) 82. + Dạng 17. Bài toán min – max với quỹ tích là đường tròn (Phương pháp đại số) 91. + Dạng 18. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp hình học) 97. + Dạng 19. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp đại số) 100. + Dạng 20. Bài toán min – max với quỹ tích là đường tròn, đường thẳng (Phương pháp hình học) 104. + Dạng 21. Bài toán min – max với quỹ tích là elip 109. + Dạng 22. Bài toán min – max với quỹ tích là pararbol 110. + Dạng 23. Bài toán min – max với quỹ tích là hyperbol 113. Câu 45 115. + Dạng 24. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số f0(x), g0(x) khi biết các cực trị của hàm số f(x) − g(x) hoặc các cực trị của hàm số f0(x) − g0 (x) 116. + Dạng 25. Tính diện tích hình phẳng dựa vào tính chất đồ thị và các hoành độ tiếp điểm 118. + Dạng 26. Ứng dụng diện tích hình phẳng để so sánh giá trị hàm số 120 . + Dạng 27. Ứng dụng diện tích hình phẳng để tính tích phân 123 . Câu 46 126. + Dạng 28. Lập đường thẳng đi qua một điểm A, cắt đường thẳng d1 và song song với mặt phẳng (P) 126. + Dạng 29. Lập đường thẳng d đi qua M, vuông góc với d1 và cắt d2 130. + Dạng 30. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua giao điểm 131. + Dạng 31. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua tích có hướng 133. Câu 47 136. + Dạng 32. Khối nón bị cắt bởi một mặt phẳng đi qua đỉnh và không qua trục 136. + Dạng 33. Khối nón nội tiếp, ngoại tiếp khối tròn xoay hoặc khối đa diện 138. + Dạng 34. Khối trụ bị cắt bởi một mặt phẳng song song với trục 139. + Dạng 35. Khối trụ bị cắt bởi mặt phẳng cắt qua trục 140. + Dạng 36. Khối trụ nội tiếp ngoại tiếp khối đa diện hoặc khối tròn xoay 141. + Dạng 37. Mặt cầu ngoại tiếp khối lăng trụ 142. + Dạng 38. Mặt cầu ngoại tiếp khối chóp 143. Câu 48 148. + Dạng 39. Phương trình, bất phương trình có thể chuyển về dạng f(A) = f(B) hoặc f(A) ≤ f(B), trong đó f(x) là hàm số đơn điệu 148. + Dạng 40. Phương trình, bất phương trình f(x, y) = 0 hoặc f(x, y) ≥ 0 có hàm số f(x, y) đơn điệu theo biến x hoặc biến y 156. + Dạng 41. Phương trình, bất phương trình dạng f(x, y) = 0 hoặc f(x, y) ≥ 0, trong đó hàm số f(x, y) có đạo hàm cấp hai theo biến x hoặc biến y không đổi dấu 163. + Dạng 42. Sử dụng bất đẳng thức Bernoulli hoặc ax ≤ mx + n, ∀x ∈ [α; β] 165. Câu 49 167. + Dạng 43. Các bài toán tìm điểm 167. + Dạng 44. Các bài toán lập phương trình mặt cầu 170. + Dạng 45. Các bài toán lập phương trình mặt phẳng 173. Câu 50 178. + Dạng 46. Tìm cực trị của hàm số hợp g(x) = f[u(x)] khi biết đồ thị hàm số f(x) hay BBT hàm số f(x) 178. + Dạng 47. Tìm tham số để hàm số chứa giá trị tuyệt đối đạt giá trị lớn nhất trên một đoạn 184. + Dạng 48. Tìm tham số để hàm số hợp có số điểm cực trị cho trước 184.

Nguồn: toanmath.com

Đọc Sách

Rèn luyện kỹ năng giải quyết bài toán trắc nghiệm thực tế - Hứa Lâm Phong
Sách gồm 256 trang trình bày các dạng toán thực tế ứng dụng trong cuộc sống được giải quyết bằng các kiến thức Toán 12, trình bày theo các chủ đề bám sát nội dung chương trình giáo khoa lớp 12 cơ bản hiện hành của Bộ Giáo dục và đào tạo. Nội dung sách gồm: Chương 1. Những ứng dụng của đạo hàm Phần 1. Tóm tắt lý thuyết và các vấn đề liên quan Phần 2. Các bài toán ứng dụng đạo hàm trong thực tế Chương 2. Những ứng dụng của hàm số mũ – hàm số logarit Chủ đề 1. Bài toán lãi đơn Chủ đề 2. Bài toán lãi kép Chủ đề 3. Bài toán vay trả góp – góp vốn Chủ đề 4. Bài toán lãi kép liên tục – Công thức tăng trưởng mũ – Ứng dụng trong lĩnh vực đời sống xã hội Chủ đề 5. Ứng dụng trong lĩnh vực khoa học – kỹ thuật [ads] Chương 3. Những ứng dụng của các khối hình trong không gian Phần 1. Làm quên với các khối Phần 2. Một số vấn đề về định lượng Chương 4. Những ứng dụng của nguyên hàm – tích phân Về cấu trúc của từng chương, được trình bày khoa học gồm các phần: A. Tóm tắt lý thuyết và các kiến thức liên quan cần nhớ B. Một số bài toán thực tế tiêu biểu C. Bài tập trắc nghiệm khách quan D. Hướng dẫn giải chi tiết bài tập trắc nghiệm
Ôn luyện thi trắc nghiệm THPT Quốc Gia môn Toán
Sách gồm 258 trang với nội dung gồm các phần: Phần 1. Định hướng chung kỳ thi THPT Quốc gia và tuyển sinh Đại học, Cao đẳng hệ chính quy môn Toán Phần 2. Nội dung ôn luyện Chương 1. Hàm số + Chuyên đề 1.1. Tính đơn điệu của hàm số + Chuyên đề 1.2. Cực trị của hàm số + Chuyên đề 1.3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số + Chuyên đề 1.4. Đường tiệm cận + Chuyên đề 1.5. Đồ thị hàm số + Chuyên đề 1.6. Tiếp tuyến – tương giao đồ thị hàm số Chương 2. Hàm số mũ và hàm số logarit + Chuyên đề 2.1. Các bài tạp vận dụng các công thúc biến đổi + Chuyên đề 2.2. Hàm số mũ và logarit + Chuyên đề 2.3. Tính đơn điệu của hàm số mũ và logarit + Chuyên đề 2.4. Đồ thị hàm số + Chuyên đề 2.5. Phương trình mũ + Chuyên đề 2.6. Bất phương trình mũ + Chuyên đề 2.7. Phương trình logarit + Chuyên đề 2.8. Bất phương trình logarit [ads] Chương 3. Nguyên hàm – Tích phân + Chuyên đề 3.1. Nguyên hàm – Tích phân các hàm cơ bản + Chuyên đề 3.2. Phương pháp biến đổi + Chuyên đề 3.3. Phương pháp tích phân từng phần + Chuyên đề 3.4. Tính diện tích hình phẳng + Chuyên đề 3.5. Tính thể tích khối tròn xoay Chương 4. Số phức + Chuyên đề 4.1. Tìm các yếu tố liên quan đến số phức + Chuyên đề 4.2. Biểu diễn hình học của số phức Chương 5. Khối đa diện + Chuyên đề 5.1. Các bài toán về thể tích của khối đa diện + Chuyên đề 5.2. Các bài toán về khoảng cách trong không gian Chương 6.  Khối tròn xoay + Chuyên đề 6.1. Hình nón + Chuyên đề 6.2. Mặt trụ + Chuyên đề 6.3. Mặt cầu Chương 7. Phương pháp tọa độ trong không gian + Chuyên đề 7.1. Các bài toán về tọa độ điểm + Chuyên đề 7.2. Các bài toán về phương trình mặt cầu + Chuyên đề 7.3. Các bài toán về phương trình mặt phẳng + Chuyên đề 7.4. Các bài toán về phương trình đường thẳng + Chuyên đề 7.5. Các bài toán tổng hợp Chương 8. Một số đề thi mẫu Sách do các tác giả Lương Đức Trọng – Nguyễn Như Thắng – Kiều Trung Thủy biên soạn
Chinh phục kỳ thi THPT môn Toán Hình học không gian cổ điển và phương pháp tọa độ không gian
Sách gồm 357 trang trình bày chi tiết các vấn đề hình học không gian và phương pháp tọa độ trong không gian (Hình học giải tích không gian). Nội dung sách: Phần 1. Khối đa diện. Phép biến hình trong không gian + Vấn đề 1. Khái niệm về khối đa diện + Vấn đề 2. Phép biến hình trong không gian + Vấn đề 3. Khối đa diện lồi và khối đa diện đều Phần 2. Góc và khoảng cách + Vấn đề 1. Góc trong không gian + Vấn đề 2. Khoảng cách trong không gian Phần 3. Thể tích khối đa diện [ads] Phần 4. Mặt nón – Mặt trụ – Mặt cầu + Vấn đề 1. Mặt nón – Hình nón – Khối nón + Vấn đề 2. Mặt trụ – Hình trụ – Khối trụ Phần 5. Phương pháp tọa độ trong không gian + Vấn đề 1. Hệ tọa độ trong không gian + Vấn đề 2. Tích có hướng và ứng dụng + Vấn đề 3. Viết phương trình mặt phẳng + Vấn đề 4. Viết phương trình đường thẳng + Vấn đề 5. Mặt cầu + Vấn đề 6. Góc trong không gian + Vấn đề 7. Bài toán tìm điểm thuộc đường thẳng thỏa mãn điều kiện cho trước + Vấn đề 8. Bài toán tìm tọa độ hình chiếu của một điểm trên đường thẳng, mặt phẳng + Vấn đề 9. Bài toán về vị trí tương đối liên quan đến đường thẳng, mặt phẳng, mặt cầu Sách do các tác giả: Cao Văn Tuấn, Lê Bá Bảo, Nguyễn Đỗ Chiến, Đặng Quang Hiếu và Nguyễn Mạnh Hùng biên soạn
Các phương pháp tìm nhanh đáp án bài tập trắc nghiệm môn Toán kỳ thi THPT - Lê Hồng Đức
Sách Các phương pháp tìm nhanh đáp án bài tập trắc nghiệm môn Toán kỳ thi THPT gồm 324 trang do các tác giả: Lê Hồng Đức (Chủ biên), Đỗ Hoàng Hà, Lê Hoàng Nam, Đoàn Minh Châu, Đào Thị Ngọc Hà biên soạn. Nội dung sách gồm: + Lời giải tự luận + Lời giải tự luận kết hợp sử dụng máy tính Casio fx – 570MS + Lựa chọn đáp án bằng phép thử + Lựa chọn đáp án bằng phép thử kết hợp sử dụng máy tính Casio fx – 570MS + Lựa chọn đáp án bằng phép đánh giá [ads]