Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh năm 2019 2020 trường chuyên Lê Quý Đôn BRVT (Vòng 1)

Nội dung Đề Toán tuyển sinh năm 2019 2020 trường chuyên Lê Quý Đôn BRVT (Vòng 1) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm 2019-2020 trường chuyên Lê Quý Đôn BRVT Đề Toán tuyển sinh năm 2019-2020 trường chuyên Lê Quý Đôn BRVT Ngày 30 tháng 05 năm 2019, trường THPT chuyên Lê Quý Đôn, tỉnh Bà Rịa - Vũng Tàu đã tổ chức kỳ thi Toán tuyển sinh vào lớp 10 năm học 2019-2020. Đề Toán tuyển sinh lớp 10 năm 2019-2020 của trường chuyên Lê Quý Đôn - BRVT (Vòng 1) là đề thi chung dành cho tất cả các thí sinh tham dự kỳ thi, bao gồm 5 bài toán tự luận, thời gian làm bài là 120 phút. Trích dẫn một số câu hỏi từ đề Toán tuyển sinh lớp 10 năm 2019-2020 trường chuyên Lê Quý Đôn - BRVT (Vòng 1): + Phân tích hàm số y = -1/2x^2 có đồ thị (P) và đường thẳng (d): y = (m - 1)x - m - 3 (với m là tham số). + Tính diện tích của một thửa ruộng hình chữ nhật có độ dài đường chéo là 40m, chiều dài lớn hơn chiều rộng 8m. + Chứng minh các tính chất của tam giác ABC góc nhọn. + Giải các bài toán tương tác với đường tròn và các đường thẳng trong mặt phẳng. Đề Toán tuyển sinh năm 2019-2020 của trường chuyên Lê Quý Đôn BRVT không chỉ đánh giá kiến thức của thí sinh mà còn đòi hỏi sự tỉ mỉ, logic và khả năng giải quyết vấn đề. Chúc các em thí sinh đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 môn Toán (chuyên) năm 2021 - 2022 trường chuyên Lê Quý Đôn - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Lê Quý Đôn – Khánh Hòa; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Lê Quý Đôn – Khánh Hòa : + Cho ABC vuông tại A. Các đường tròn O đường kính AB và I đường kính AC cắt nhau tại điểm thứ hai là H H A. Đường thẳng d thay đổi đi qua A cắt đường tròn O tại M và cắt đường tròn I tại N (A nằm giữa hai điểm M và N). a) Đoạn thẳng OI lần lượt cắt các đường tròn O, (I) lần lượt tại D E. Chứng minh OI là đường trung trực của đoạn thẳng AH và AB AC BC DE 2. b) Chứng minh giao điểm S của hai đường thẳng OM và IN di chuyển trên một đường tròn cố định khi đường thẳng (d) quay quanh A. c) Giả sử đường thẳng MH cắt đường trong I tại điểm thứ hai là T T H. Chứng minh rằng ba điểm N I T thẳng hàng và ba đường thẳng MS AT NH đồng quy. + Hai số tư nhiên khác nhau được gọi là “thân thiết” nếu tổng bình phương của chúng chia hết cho 3. Hỏi tập họp X {1;2;3;…;2021} có bao nhiêu cặp số “thân thiết” (không phân biệt thứ tự)? + Trong kỳ thi chọn đội tuyển năng khiếu của trường T có n môn 5 n n, mọi môn thi đều có thí sinh tham gia và thỏa mãn đồng thời các điều kiện sau: Có ít nhất 5 môn có số lượng thí sinh tham gia thi đôi một khác nhau; Với 2 môn thi bất kì, luôn tìm được 2 môn thi khác có tổng số lượng thi sinh tham gia bằng với tổng số lưọng thí sinh của 2 môn đó. Hỏi kỳ thi có ít nhất bao nhiêu môn được tổ chức?
Đề thi vào 10 môn Toán (chuyên Tin) năm 2021 - 2022 trường chuyên Hoàng Văn Thụ - Hòa Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán (chuyên Tin) năm học 2021 – 2022 trường THPT chuyên Hoàng Văn Thụ – Hòa Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm (bản chính thức do sở Giáo dục và Đào tạo tỉnh Hòa Bình công bố); kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2021. Trích dẫn đề thi vào 10 môn Toán (chuyên Tin) năm 2021 – 2022 trường chuyên Hoàng Văn Thụ – Hòa Bình : + Trong mặt phẳng tọa độ Oxy cho mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = 2×2 và đường thẳng (d): y = 4x – m + 1 (với m là tham số). Tìm giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ 1 2 x x thỏa mãn hệ thức: 2 2 1 2 1 2 x x x x 4. + Hai cây nến có cùng chiều dài và làm từ các chất liệu khác nhau, cây nến thứ nhất cháy hết với tốc độ đều trong 4 giờ, cây nến thứ nhất cháy hết với tốc độ đều trong 6 giờ. Hỏi nếu đốt cùng một lúc thì sau bao lâu phần còn lại của cây nến thứ hai gấp đôi phần còn lại của cây nến thứ nhất. + Cho đường tròn tâm O, bán kính R. Từ một điểm A ở ngoài đường tròn kẻ hai tiếp tuyến AB và AC với đường tròn (B và C là các tiếp điểm). Qua B kẻ đường thẳng song song với AO cắt đường tròn tại M (M khác B), đường thẳng AM cắt đường tròn tại N (N khác M), đường thẳng BN cắt AO tại I, AO cắt BC tại K.
Đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Cà Mau
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2021 – 2022 sở GD&ĐT Cà Mau; kỳ thi được diễn ra vào ngày 11 tháng 06 năm 2021. Trích dẫn đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Cà Mau : + Tất cả học sinh lớp 9 của Trường trung học cơ sở Tân Tiến tham gia xếp hàng để đồng diễn thể dục; mỗi hàng đươc xếp không quá 25 học sinh. Nếu xếp mỗi hàng 16 học sinh thì còn thừa một học sinh; nếu bớt đi một hàng thì có thể chia đều tất cả các học sinh vào các hàng còn lại sao cho số học sinh ở mỗi hàng là bằng nhau. Hỏi Trường trung học cơ sở Tân Tiến có bao nhiêu ho5c sinh lớp 9? + Ngày 31/5/2021, Ủy ban Bầu cử của tỉnh A đã ban hành Nghị quyết công bố 51 đại biểu là nam và nữ trúng cử Hội đồng nhân dân tỉnh khóa X, nhiệm kỳ 2021-2026. Người ta thống kê được rằng: tuổi trung bình của các đại biểu nam trúng cử là 1612 33 tuổi; tuổi trung bình của các đại biểu nữ trúng cử là 413 9 tuổi và tuổi trung bình của 51 đại biểu trúng cử là 2438 51 tuổi. Tính số đại biểu trúng cử là nam; số đại biểu trúng cử là nữ của tỉnh A. + Cho tam giác ABC có ba góc nhọn. Các đường cao AM, BN, CP cắt nhau tại H. Gọi I là điểm đối xứng của H qua BC. a) Chứng minh tứ giác ABIC nội tiếp được đường tròn (O). b) Gọi K là trung điểm của AB, chứng minh NK là tiếp tuyến của đường tròn ngoại tiếp của tam giác NHC. c) Biết BN cắt đường tròn (O) tại điểm thứ hai là E và CP cắt đường tròn (O) tại điểm thứ hai là F. Tính giá trị biểu thức AI BE CF G AM BN CP.
Đề thi vào 10 môn Toán (chuyên Toán - Tin) năm 2021 - 2022 sở GDĐT Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán (chuyên Toán – Tin) năm học 2021 – 2022 sở GD&ĐT Bình Định; đề thi có đáp án và lời giải chi tiết (lời giải được biên soạn bởi thầy giáo Lê Hồng Quốc); kỳ thi được diễn ra vào ngày 11 tháng 06 năm 2021. Trích dẫn đề thi vào 10 môn Toán (chuyên Toán – Tin) năm 2021 – 2022 sở GD&ĐT Bình Định : + Cho tập hợp A gồm 21 số tự nhiên khác nhau thỏa mãn tổng của 11 số bất kỳ lớn hơn tổng của 10 số còn lại. Biết các số 101 và 102 thuộc tập hợp A. Tìm các số còn lại của tập hợp A. + Tìm tất cả các số nguyên dương x sao cho x2 – x + 13 là số chính phương. + Cho tam giác ABC nội tiếp đường tròn tâm O, D là điểm bất kì thuộc cạnh BC (D khác B và C). Gọi M, N lần lượt là trung điểm của các cạnh AB và AC. Đường thẳng MN cắt đường tròn (O) tại P, Q (theo thứ tự P, M, N, O). Đường tròn ngoại tiếp tam giác BDP cắt AB tại I (khác B). Các đường thẳng DI và AC cắt nhau tại K. a) Chứng minh 4 điểm A, I, P, K nằm trên một đường tròn. b) Chứng minh QA/QB = PD/PK. c) Đường thẳng CP cắt đường tròn ngoại tiếp tam giác BDP tại G (khác P). Đường thẳng IG cắt đường thẳng BC tại E. Chứng minh khi D di chuyển trên đoạn BC thì tỉ số CD/CE không đổi.