Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT Quốc gia 2017 môn Toán sở GD và ĐT TP. HCM (Cụm chuyên môn VI)

Đề thi thử THPT Quốc gia 2017 môn Toán sở GD và ĐT TP. HCM (Cụm chuyên môn VI) gồm 50 câu hỏi trắc nghiệm, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề: + Một bể nước lớn của khu công nghiệp có phần chứa nước là một khối nón đỉnh S phía dưới (hình vẽ) , đường sinh SA = 27mét. Có một lần lúc bể chứa đầy nước, người ta phát hiện nước trong bể không đạt yêu cầu về vệ sinh nên lãnh đạo khu công nghiệp cho thoát hết nước để làm vệ sinh bể chứa. Công nhân cho thoát nước ba lần qua một lổ ở đỉnh S. Lần thứ nhất khi mực nước tới điểm M thuộc SA thì dừng, lần thứ hai khi mực nước tới điểm N thuộc SA thì dừng, lần thứ ba mới thoát hết nước. Biết rằng lượng nước mỗi lần thoát bằng nhau. Tính độ dài đoạn MN. + Bên cạnh con đường trước khi vào thành phố người ta xây một ngọn tháp đèn lộng lẫy. Ngọn tháp hình tứ giác đều S.ABCD cạnh bên SA = 600 mét, góc ASB = 15 độ. Do có sự cố đường dây điện tại điểm Q (là trung điểm của SA) bị hỏng, người ta tạo ra một con đường từ A đến Q gồm bốn đoạn thẳng: AM, MN, NP, PQ (hình vẽ). Để tiết kiệm kinh phí, kỹ sư đã nghiên cứu và có được chiều dài con đường từ A đến Q ngắn nhất. Tính tỷ số k = (AM + MN)/(NP + PQ). + Ông A vay ngân hàng T(triệu đồng) với lãi suất 12% năm. Ông A thỏa thuận với ngân hàng cách thức trả nợ như sau: sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng. Nhưng cuối tháng thứ ba kể từ lúc vay ông A mới hoàn nợ lần thứ nhất, cuối tháng thứ tư ông A hoàn nợ lần thứ hai, cuối tháng thứ năm ông A hoàn nợ lần thứ ba ( hoàn hết nợ). Biết rằng số tiền hoàn nợ lần thứ hai gấp đôi số tiền hoàn nợ lần thứ nhất và số tiền hoàn nợ lần thứ ba bằng tổng số tiền hoàn nợ của hai lần trước. Tính số tiền ông A đã hoàn nợ ngân hàng lần thứ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 1 trường THPT Đông Hưng Hà - Thái Bình
Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 1 trường THPT Đông Hưng Hà – Thái Bình mã đề 851 được biên soạn bám sát đề tham khảo tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo, đề thi có đáp án. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 1 trường THPT Đông Hưng Hà – Thái Bình : + Cho hình chóp S.ABCD có thể tích bằng 3a3, đáy ABCD là hình bình hành với AB = 2a, AD = a, ABC = 150 độ. Gọi O là giao điểm của AC và BD, E là điểm đối xứng của S qua O và M, N, P, Q lần lượt là trọng tâm của các mặt bên SAB, SBC, SCD, SDA. Thể tích của khối đa diện có các đỉnh là các điểm S, M, N, P, Q, E bằng? + Cho hình trụ có trục O1O2 . Một mặt phẳng song song với trục O1O2 cắt hình trụ theo thiết diện là hình chữ nhật, biết bán kính của đường tròn ngoại tiếp thiết diện bằng bán kính đáy của hình trụ và O là tâm của thiết diện. Số đo của góc O1OO2 bằng? [ads] + Trong Vật lí, sự phân rã của các chất phóng xạ được biểu diễn bằng công thức m(t) = m0.(1/2)^t/T, trong đó m0 là khối lượng chất phóng xạ ban đầu, m(t) là khối lượng chất phóng xạ tại thời điểm t, T là chu kì bán rã (là khoảng thời gian để một nửa số nguyên tử của chất phóng xạ biến thành chất khác). Một chất phóng xạ độc hại cứ sau khoảng thời gian T = 24000 năm thì một nửa chất phóng xạ này sẽ phân rã thành chất khác không độc hại đối với sức khỏe con người. Hỏi sau ít nhất bao nhiêu năm thì 1 kg chất phóng xạ này sẽ không còn độc hại nữa, biết chất phóng xạ này không còn độc hại nếu khối lượng chất phóng xạ còn lại bé hơn 10^-6 gram?
Đề thi thử lần 3 THPT QG 2020 môn Toán trường THPT chuyên Nguyễn Trãi - Hải Dương
Nhằm chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán, thứ Bảy ngày 13 tháng 06 năm 2020, trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương tổ chức kỳ thi thử Trung học Phổ thông Quốc gia môn Toán năm học 2019 – 2020 lần thi thứ ba. Đề thi thử lần 3 THPT QG 2020 môn Toán trường THPT chuyên Nguyễn Trãi – Hải Dương mã đề 824 gồm 08 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút. Trích dẫn đề thi thử lần 3 THPT QG 2020 môn Toán trường THPT chuyên Nguyễn Trãi – Hải Dương : + COVID19 là một loại bệnh viêm đường hô hấp cấp do chủng mới của virus corona (nCoV) bắt nguồn từ Trung Quốc (đầu tháng 12/2019) gây ra với tốc độ truyền bệnh rất nhanh (tính đến ngày 2/6/2020 đã có 6.365.173 người nhiễm bệnh). Giả sử ban đầu có 1 người bị nhiễm bệnh và cứ sau 1 ngày sẽ lây sang a người khác (a thuộc N*). Tất cả những người nhiễm bệnh lại tiếp tục lây sang những người khác với tốc độ như trên (1 người lây a người). Tìm a biết sau 7 ngày có tổng cộng 16384 người mắc bệnh (giả sử rằng những người nhiễm bệnh không phát hiện bản thân bị bệnh, không phòng tránh cách li và trong thời gian ủ bệnh vẫn lây bệnh sang người khác được). [ads] + Gọi A là tập các số tự nhiên có 5 chữ số đôi một khác nhau được lập từ các số 1; 2; 3; 4; 5; 6; 7; 8; 9. Lấy ngẫu nhiên một số thuộc tập A. Tính xác suất để số lấy được luôn có mặt hai chữ số 1; 2 và chúng không đứng cạnh nhau. + Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = f(cosx) – 2cosx – m cắt trục hoành tại điểm có hoành độ thuộc khoảng (-pi/2;pi/2).
Đề thi thử tốt nghiệp THPT năm 2020 môn Toán liên trường THPT - Nghệ An
Chiều thứ Bảy ngày 13 tháng 06 năm 2020, cụm các trường THPT thuộc sở Giáo dục và Đào tạo tỉnh Nghệ An đã tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông năm học 2019 – 2020 môn Toán. Đề thi thử tốt nghiệp THPT năm 2020 môn Toán liên trường THPT – Nghệ An mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, cấu trúc đề bám sát đề minh họa tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo, đề thi có đáp án và lời giải chi tiết mã đề 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124. Trích dẫn đề thi thử tốt nghiệp THPT năm 2020 môn Toán liên trường THPT – Nghệ An : + Ông A có số tiền là 100 000 000 đồng gửi tiết kiệm theo thể thức lãi kép, có hai loại kì hạn: loại kì hạn 12 tháng với lãi suất là 12% / năm và loại kì hạn 1 tháng với lãi suất 1% / tháng. Ông A muốn gửi 10 năm. Theo anh chị, kết luận nào sau đây đúng (làm tròn đến hàng nghìn). A. Gửi theo kì hạn 1 tháng có kết quả nhiều hơn kì hạn 1 năm là 16 186 000 đồng sau 10 năm. B. Cả hai loại kì hạn đều có cùng số tiền như nhau sau 10 năm. C. Gửi theo kì hạn 1 tháng có kết quả nhiều hơn kì hạn 1 năm là 19 454 000 đồng sau 10 năm. D. Gửi theo kì hạn 1 tháng có kết quả nhiều hơn kì hạn 1 năm là 15 584 000 đồng sau 10 năm. [ads] + Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau lập thành từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Chọn ngẫu nhiên 1 số từ tập S. Tính xác suất để số được chọn có đúng 2 chữ số chẵn. + Cho hình chóp S.ABC, đáy là tam giác ABC có AB = BC√5, AC = 2BC√2, hình chiếu của S lên mặt phẳng (ABC) là trung điểm O của cạnh AC. Khoảng cách từ A đến mặt phẳng (SBC) bằng 2. Mặt phẳng (SBC) hợp với mặt phẳng (ABC) một góc x thay đổi. Biết rằng giá trị nhỏ nhất của thể tích khối chóp S.ABC bằng √a/b, trong đó a và b thuộc N*, a là số nguyên tố. Tổng a + b bằng?
Đề thi thử tốt nghiệp THPT 2020 môn Toán sở GDĐT Hưng Yên
Chiều thứ Sáu ngày 12 tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Hưng Yên tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông năm học 2019 – 2020 môn thi Toán. Đề thi thử tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Hưng Yên có cấu trúc bám sát đề minh họa tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo, đề thi gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, bản PDF và đáp án đề thi này sẽ được cập nhật trong thời gian sớm nhất có thể. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Hưng Yên : + Cho hàm số y = -x^4 + 2x^2 + 3. Mệnh đề nào sau đây là đúng? A. Đồ thị hàm số có một điểm cực đại và không có điểm cực tiểu. B. Đồ thị hàm số có một điểm cực tiểu và hai điểm cực đại. C. Đồ thị hàm số có một điểm cực tiểu và không có điểm cực đại. D. Đồ thị hàm số có một điểm cực đại và hai điểm cực tiểu. + Cho hình trụ có O, O’ là tâm hai đáy. Xét hình chữ nhật ABCD có A, B cùng thuộc (O) và C, D cùng thuộc (O’) sao cho AB = a√3, BC = 2a đồng thời (ABCD) tạo với mặt phẳng đáy hình trụ góc 60°. Thể tích khối trụ bằng? + Số lượng của một loại vi khuẩn X trong phòng thí nghiệm được tính theo công thức x(t) = x(0).2^t, trong đó x(0) là số lượng vi khuẩn X ban đầu, x(t) là số lượng vi khuẩn X sau t phút. Biết sau 2 phút thì số lượng vi khuẩn X là 625 nghìn con. Hỏi sau bao lâu, kể từ lúc bắt đầu, số lượng vi khuẩn X là 5 triệu con?