Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Cần Thơ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Cần Thơ; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Cần Thơ : + Một bình chứa nước có dạng hình nón và mực nước trong bình cách đỉnh 8 cm (minh họa như Hình 1). Khi đảo ngược bình lại thì phần không gian trống của bình có chiều cao 2 cm (minh họa như Hình 2). Tính chiều cao của bình. Hình 1 Hình 2. + Cho hình bình hành ABCD có CB CA. Gọi M là điểm bất kỳ trên tia đối của tia BA. Đường tròn ngoại tiếp tam giác ACD cắt đường thẳng MD tại điểm N (N khác D), đường tròn ngoại tiếp tam giác AMN cắt đường thẳng MC tại điểm K (K khác M). a) Chứng minh tứ giác ABKC nội tiếp. b) Gọi I là giao điểm của đường thẳng AN và đường thẳng BK. Chứng minh I luôn thuộc một đường thẳng cố định khi M thay đổi. + Cho bảng ô vuông có kích thước 4 4 như sau: Mỗi ô trong bảng này được viết một số nguyên dương sao cho 16 số trên bảng đôi một khác nhau và trong mỗi hàng, mỗi cột luôn tồn tại một số bằng tổng của ba số còn lại tương ứng trong hàng, trong cột đó. Gọi M là số lớn nhất trong bảng. Tìm giá trị nhỏ nhất của M.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đồng Nai
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Đồng Nai gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một đội xe dự định chở 120 tấn hàng. Để tăng sự an toàn nên đến khi thực hiện, đội xe được bổ sung thêm 4 chiếc xe, lúc này số tấn hàng của mỗi xe chở ít hơn số tấn hàng của mỗi xe dự định chở là 1 tấn. Tính số tấn hàng của mỗi xe dự định chở, biết số tấn hàng của mỗi xe chở khi dự định là bằng nhau, khi thực hiện là bằng nhau. + Cho tam giác ABC có ba đường cao AD, BE, CF cắt nhau tại H. Biết ba góc CAB, ABC, BCA đều là góc nhọn. Gọi M là trung điểm của đoạn AH 1) Chứng minh tứ giác AEHF nội tiếp đường tròn 2) Chứng minh CE.CA = CD.CB 3) Chứng minh EM là tiếp tuyến của đường tròn ngoại tiếp tam giác BEF 4) Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh 2 góc DIJ và DFC bằng nhau [ads] + Cho hai hàm số y = -1/2x^2 và y = x – 4 có đồ thị lần lượt là (P) và (d) 1) Vẽ hai đồ thị (P) và (d) trên cùng một mặt phẳng tọa độ 2) Tìm tọa độ giao điểm của hai đồ thị (P) và (d)
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 2)
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 2 – Dùng riêng cho học sinh chuyên Toán và chuyên Tin) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O) bán kính R và một điểm M nằm ngoài (O). Kẻ hai tiếp tuyến MA, MB tới đường tròn (O) (A, B là hai tiếp điểm). Trên đoạn thẳng AB lấy điểm C (C khác A, C khác B). Gọi I; K là trung điểm MA, MC. Đường thẳng KA cắt đường tròn (O) tại điểm thứ hai D 1. Chứng minh KO^2 – KM^2 = R^2 2. Chứng minh tứ giác BCDM là tứ giác nội tiếp 3. Gọi E là giao điểm thứ hai của đường thẳng MD với đường tròn (O) và N là trung điểm KE đường thẳng KE cắt đường tròn (O) tại điểm thứ hai F. Chứng minh rằng bốn điểm I, A, N, F cùng nằm trên một đường tròn [ads] + Xét hình bên: Ta viết các số 1, 2, 3, 4 … 9 vào vị trí của 9 điểm trong hình vẽ bên sao cho mỗi số chỉ xuất hiện đúng một lần và tổng ba số trên một cạnh của tam giác bằng 18. Hai cách viết được gọi là như nhau nếu bộ số viết ở các điểm (A;B;C;D;E;F;G;H;K) của mỗi cách là trùng nhau. Hỏi có bao nhiêu cách viết phân biệt? Tại sao?
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 1)
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 1 – Dùng cho mọi thí thi vào trường chuyên) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Anh nam đi xe đạp từ A đến C. Trên quãng đường AB ban đầu (B nằm giữa A và C). Anh Nam đi với vận tốc không đổi a (km/h) và thời gian đi từ A đến B là 1,5 giờ. Trên quãng đường BC còn lại anh Nam đi chậm dần đều với vận tốc tại thời điểm t (tính bằng giờ) kể từ B là v = -8t + a (km/h). Quãng đường đi được từ B đến thời điểm t đó là S = -4t^2 + at. Tính quãng đường AB biết rằng đến C xe dừng hẳn và quãng đường BC dài 16km. [ads] + Cho đường tròn (O) bán kính R ngoại tiếp tam giác ABC có ba góc nhọn. Các tiếp tuyến của đường tròn (O) tại các điểm B, C cắt nhau tại điểm P. Gọi D, E tương ứng là chân đường các đường vuông góc kẻ từ P xuống các đường thẳng AB và AC và M là trung điểm cạnh BC 1. Chứng minh góc MEP = góc MDP 2. Giả sử B, C cố định và A chạy trên (O) sao cho tam giác ABC luôn là tam giác có ba góc nhọn. Chứng minh đường thẳng DE luôn đi qua một điểm cố định 3. Khi tam giác ABC đều. Hãy tính diện tích tam giác ADE theo R
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Phú Thọ
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Phú Thọ gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho tứ giác ABCD nội tiếp đường tròn (O; R). Gọi I là giao điểm AC và BD. Kẻ IH vuông góc với AB; IK vuông góc với AD (H thuộc AB; K thuộc AD). a) Chứng minh tứ giác AHIK nội tiếp đường tròn b) Chứng minh rằng IA.IC = IB.ID c) Chứng minh rằng tam giác HIK và tam giác BCD đồng dạng [ads] + Trong mặt phẳng tọa độ Oxy cho parabol (P) có phương trình y = 1/2x^2 và hai điểm A, B thuộc (P) có hoành độ lần lượt là xA = -1; xB = 2. a) Tìm tọa độ A, B b) Viết phương trình đường thẳng (d) đi qua hai điểm A, B c) Tính khoảng cách từ O (gốc tọa độ) đến đường thẳng (d)