Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đường thẳng song song với một đường thẳng cho trước

Tài liệu gồm 09 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề đường thẳng song song với một đường thẳng cho trước, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT + Định nghĩa: Khoảng cách giữa hai đường thẳng song song là khoảng cách từ một điểm tùy ý trên đường thẳng này đến đường thẳng kia. + Tính chất: Các điểm cách đường thẳng b một khoảng bằng h nằm trên hai đường thẳng song song với b và cách b một khoảng bằng h. + Nhận xét: Tập hợp các điểm cách một đường thẳng cố định một khoảng bằng h không đổi là hai đường thẳng song song với đường thẳng đó và cách đường thẳng đó một khoảng bằng h. + Ghi chú: – Tập hợp các điểm cách điểm O cố định một khoảng bằng r không đổi là đường tròn (O, r). – Tập hợp các điểm cách đều hai đầu mút của một đoạn thẳng cố định là đường trung trực của đoạn thẳng đó. – Tập hợp các điểm nằm trong góc và cách đều hai cạnh của góc là tia phân giác của góc đó. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI CB – NC MINH HỌA + Dạng 1. Phát biểu tập hợp điểm (không chứng minh). Phương pháp giải: Vận dụng các tính chất để chi ra hình dạng của tập hợp các điểm cùng thỏa mãn một điều kiện nào đó. + Dạng 2. Tìm quỹ tích (tập hợp các điểm). Phương pháp giải: Vận dụng các nhận xét về tập hợp điểm. + Dạng 3.Tổng hợp. B. BÀI TẬP RÈN LUYỆN

Nguồn: toanmath.com

Đọc Sách

Đề cương giữa học kì 1 Toán 8 năm 2023 - 2024 trường THCS Thăng Long - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập giữa học kì 1 môn Toán 8 năm học 2023 – 2024 trường THCS Thăng Long, thành phố Hà Nội. A. KIẾN THỨC TRỌNG TÂM 1. Đơn thức, đa thức, cộng trừ nhân đa thức. Chia đa thức cho đơn thức. 2. Hiệu hai bình phương, bình phương của một tổng hay một hiệu. 3. Tứ giác, hình thang cân, hình bình hành, hình chữ nhật, hình thoi và hình vuông. B. BÀI TẬP RÈN LUYỆN
Ôn tập giữa học kỳ 1 Toán 8 năm 2023 - 2024 trường THCS Chu Văn An - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương hướng dẫn nội dung ôn tập kiểm tra giữa học kỳ 1 môn Toán 8 năm học 2023 – 2024 trường THCS Chu Văn An, quận Tây Hồ, thành phố Hà Nội. PHẦN I . NỘI DUNG KIẾN THỨC. A. ĐẠI SỐ. 1. Đơn thức nhiều biến, đa thức nhiều biến. 2. Các phép tính với đa thức nhiều biến. 3. Hằng đẳng thức đáng nhớ. 4. Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử. B. HÌNH HỌC. 1. Hình chóp tam giác đều. 2. Hình chóp tứ giác đều. 3. Định lý Pythagore. PHẦN II . MỘT SỐ CÂU HỎI & BÀI TẬP THAM KHẢO.
Đề cương giữa kì 1 Toán 8 năm 2023 - 2024 trường Archimedes Đông Anh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập giữa học kì 1 môn Toán 8 năm học 2023 – 2024 trường TH – THCS – THPT Archimedes Đông Anh, thành phố Hà Nội. + Dạng 1: Rút gọn biểu thức. + Dạng 2: Tìm số chưa biết. + Dạng 3: Tính giá trị của biểu thức. + Dạng 4: Toán thực tế. + Dạng 5: Hình học. + Dạng 6: Nâng cao.
Đề cương giữa kì 1 Toán 8 năm 2023 - 2024 trường THCS Trọng Điểm - Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương hướng dẫn ôn tập giữa học kì 1 môn Toán 8 năm học 2023 – 2024 trường THCS Trọng Điểm, tỉnh Quảng Ninh. A. TÓM TẮT LÝ THUYẾT A.1. Đại số. A.2. Hình học trực quan. B. BÀI TẬP TRẮC NGHIỆM (8NB – 6TH – 4VD – 2 VDC). B.1. Đại số. B.2. Hình học. C. CÁC DẠNG TỰ LUẬN C.1. ĐẠI SỐ. Dạng 1: Bài tập về các phép tính về đa thức nhiều biến. Dạng 2: Bài tập về các hằng đẳng thức đáng nhớ. Dạng 3: Bài tập về vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử. + 3.1. Vận dụng trực tiếp hằng đẳng thức vào phân tích đa thức thành nhân tử. + 3.2. Vận dụng hằng đẳng thức thông qua nhóm số hạng và đặt nhân tử chung vào phân tích đa thức thành nhân tử. Dạng 4: Bài toán thực tế. C.2. HÌNH HỌC. Dạng 1. Tính diện tích xung quanh, thể tích, chiều cao hình chóp tam giác đều, tứ giác đều. Dạng 2. Toán thực tế liên quan đến các công thức diện tích xung quanh, thể tích của các hình chóp tam giác đều, tứ giác đều.