Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Sơn La

Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Sơn La Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Sơn La Đề thi tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Sơn La Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Sơn La tổ chức là một trong những cột mốc quan trọng trong hành trình học tập của học sinh Sơn La. Đây là bước quan trọng đánh dấu sự hoàn thiện từ khối trung học cơ sở và cũng là căn cứ để xét tuyển vào các trường Trung học Phổ thông trên địa bàn. Một trong những môn thi quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Nội dung của đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Sơn La đã được công bố. Trong đó, có các câu hỏi đa dạng và phong phú, từ những bài toán cơ bản đến những bài toán phức tạp, đòi hỏi sự logic, tư duy và kiến thức sâu rộng. Học sinh cần phải rèn luyện kỹ năng giải bài toán và ôn tập kiến thức một cách chặt chẽ để đạt kết quả cao trong kỳ thi này. Với nội dung đa dạng và phong phú như vậy, đề thi tuyển sinh Toán sở GD&ĐT Sơn La năm 2019 – 2020 đã thu hút được sự quan tâm của đông đảo thầy cô giáo, phụ huynh và học sinh. Việc giải đề này không chỉ giúp học sinh ôn tập kiến thức mà còn phản ánh khả năng giải bài toán, tư duy logic và sự linh hoạt trong tư duy của từng em. Hy vọng rằng những kiến thức và kỹ năng mà các em học sinh có được từ việc ôn tập và giải đề thi tuyển sinh này sẽ giúp họ tự tin và thành công trong kỳ thi sắp tới, từ đó tiến xa trên con đường học tập và phát triển bản thân.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Ninh Bình
Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Ninh Bình tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Ninh Bình gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Ninh Bình : + Người ta đổ thêm 20 gam nước vào một dung dịch chứa 4 gam muối thì nồng độ của dung dịch giảm đi 10%. Hỏi trước khi đổ thêm nước thì dung dịch chứa bao nhiêu gam nước? [ads] + Cho ABC nhọn nội tiếp đường tròn tâm O. Hai đường cao BE, CF của ABC cắt nhau tại H. a) Chứng minh tứ giác BFEC nội tiếp đường tròn. b) Chứng minh rằng AF.AB = AE.AC. c) Kẻ đường kính AD của đường tròn tâm O. Chứng minh tứ giác BHCD là hình bình hành. + Một chiếc máy bay bay lên từ mặt đất với vận tốc 600km/h. Đường bay tạo với phương nằm ngang một góc 30 độ. Hỏi sau 1,5 phút máy bay lên cao được bao nhiêu kilômét theo phương thẳng đứng?
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Phú Thọ
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Phú Thọ tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Phú Thọ gồm có 02 trang với 10 câu trắc nghiệm và 04 câu tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Phú Thọ : + Cho hình vuông ABCD nội tiếp đường tròn tâm O. Gọi M, N lần lượt là trung điểm BC, CD. Đường thẳng AM, BN cắt đường tròn lần lượt là E, F (như hình vẽ bên). Số đo góc EDF bằng? + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Tia phân giác góc BAC cắt cạnh BC tại D và cắt đường tròn (O) tại M. Gọi K là hình chiếu của M trên AB. T là hình chiếu của M trên AC. Chứng minh rằng: a. AKMT là tứ giác nội tiếp. b. MB^2 = MC^2 = MD.MA. c. Khi đường tròn (O) và B; C cố định, điểm A thay đổi trên cung lớn BC thì tổng AB/MK + AC/MT có giá trị không đổi. [ads] + Cho phương trình: x2 – 2mx + m – 1 = 0 (m là tham số). a. Giải phương trình khi m = 2. b. Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m. c. Gọi x1; x2 là hai nghiệm của phương trình. Tìm m để x1^2.x2 + mx2 – x1 = 4.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Nam Định
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Nam Định gồm có 02 trang với 08 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Nam Định : + Cho tam giác nhọn ABC nội tiếp đường tròn (O;R). Hai đường cao BD, CE của tam giác ABC cắt nhau tại H. Các tia BD, CE cắt đường tròn (O;R) lần lượt tại điểm thứ hai là P, Q. 1) Chứng minh rằng tứ giác BCDE nội tiếp và cung AP bằng cung AQ. 2) Chứng minh E là trung điểm của HQ và OA ⊥ DE. 3) Cho góc CAB bằng 60 độ, R = 6cm. Tính bán kính đường tròn ngoại tiếp tam giác AED. [ads] + Cho đường tròn (O;5cm) và đường tròn (O’;7cm), biết OO’ = 2cm. Vị trí tương đối của hai đường tròn đó là: A. Cắt nhau. B. Tiếp xúc trong. C. Tiếp xúc ngoài. D. Đựng nhau. + Diện tích xung quanh hình trụ có bán kính đáy 5 cm, chiều cao 2 cm là?
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Đồng Nai
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Đồng Nai tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Đồng Nai gồm có 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Đồng Nai : + Một hình cầu có thể tích bằng 288π (cm3). Tính diện tích mặt cầu. + Một nhóm học sinh được giao xếp 270 quyển sách vào tủ ở thư viện trong một thời gian nhất định. Khi bắt đầu làm việc nhóm được bổ sung thêm học sinh nên mỗi giờ nhóm sắp xếp nhiều hơn dự định 20 quyển sách, vì vậy không những hoàn thành trước dự định 1 giờ mà còn vượt mức được giao 10 quyển sách. Hỏi số quyển sách mỗi giờ nhóm dự định xếp là bao nhiêu. [ads] + Cho tam giác nhọn ABC nội tiếp đường tròn (O) có hai đường cao BE, CF cắt nhau tại trực tâm H, AB<AC. Vẽ đường kính AD của (O). Gọi K là giao điểm của đường thẳng AH với (O), K khác A. Gọi L, P lần lượt là giao điểm của hai đường thẳng BC và EF, AC và KD. 1.Chứng minh tứ giác EHKP nội tiếp đường tròn và tâm I của đường tròn này thuộc đường thẳng BC. 2.Gọi M là trung điểm của đoạn BC. Chứng minh AH = 2OM. 3. Gọi T là giao điểm của đường tròn (O) với đường tròn ngoại tiếp tam giác EFK, T khác K. Chứng minh rằng ba điểm L, K, T thẳng hàng.