Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi thành phố Toán THCS năm 2022 2023 sở GD ĐT Hải Phòng

Nội dung Đề học sinh giỏi thành phố Toán THCS năm 2022 2023 sở GD ĐT Hải Phòng Bản PDF
Chúng tôi hân hạnh giới thiệu đến quý thầy cô giáo và các bạn học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán lớp 9 THCS năm học 2022 - 2023 do Sở Giáo dục và Đào tạo thành phố Hải Phòng tổ chức. Đề thi này bao gồm các câu hỏi thú vị và ý nghĩa, bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm.

Một trong những câu hỏi trong đề thi là về một định lí trong hình học: Cho ∆ABC nhọn không cân tại đỉnh A, nội tiếp đường tròn (O). Kẻ đường cao AH của ∆ ABC H BC. Gọi P Q lần lượt là chân đường vuông góc kẻ từ H đến các đường thẳng AB AC. Câu hỏi đề cập đến việc chứng minh tứ giác BCQP nội tiếp và các bước chứng minh liên quan đến đường thẳng PQ và BC cắt nhau tại M, đường thẳng AM cắt đường tròn (O) tại điểm K.

Đề cập đến các vấn đề khác nhau như tối ưu hóa diện tích hình vuông để chứa 5 hình tròn không chồng lên nhau, hay việc chứng minh một công thức toán học phức tạp.

Đề thi học sinh giỏi Toán lớp 9 thành phố Hải Phòng năm học 2022 - 2023 là cơ hội để các em thể hiện kiến thức và khả năng giải quyết vấn đề của mình. Chúc các em học sinh đạt kết quả cao và phấn đấu trên con đường học tập.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi lớp 9 môn Toán cấp quận năm 2023 2024 phòng GD ĐT Tây Hồ Hà Nội
Nội dung Đề học sinh giỏi lớp 9 môn Toán cấp quận năm 2023 2024 phòng GD ĐT Tây Hồ Hà Nội Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 cấp quận Tây Hồ năm 2023-2024 Đề thi học sinh giỏi Toán lớp 9 cấp quận Tây Hồ năm 2023-2024 Chúng tôi xin trân trọng giới thiệu đến quý thầy cô và các em học sinh lớp 9 bộ đề thi chọn học sinh giỏi môn Toán lớp 9 cấp quận năm học 2023-2024 do Phòng Giáo dục và Đào tạo UBND Quận Tây Hồ, thành phố Hà Nội tổ chức. Kỳ thi sẽ diễn ra vào ngày 22 tháng 11 năm 2023. Đề thi học sinh giỏi Toán lớp 9 cấp quận Tây Hồ năm 2023-2024 là cơ hội cho các em học sinh thể hiện tài năng, kiến thức và kỹ năng Toán của mình. Qua đó, không chỉ giúp nâng cao trình độ học vấn mà còn tạo điều kiện tốt để thúc đẩy phát triển tư duy logic, sáng tạo của các em. Chúng tôi hy vọng rằng đề thi sẽ giúp các em học sinh lớp 9 có cơ hội thể hiện khả năng và đạt được kết quả cao, từ đó khẳng định vị trí của mình trong học tập và đồng thời tạo nền tảng vững chắc cho sự phát triển sau này. Chúc các em thi tốt!
Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Đức Phổ Quảng Ngãi
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Đức Phổ Quảng Ngãi Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 năm 2023 - 2024 Đề học sinh giỏi Toán lớp 9 năm 2023 - 2024 Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 bộ đề thi chọn học sinh giỏi môn Toán năm học 2023 - 2024 từ Phòng Giáo dục và Đào tạo thị xã Đức Phổ, tỉnh Quảng Ngãi. Bộ đề bao gồm các câu hỏi thú vị như sau: 1. Hãy tìm hai số nguyên tố sao cho tổng và hiệu của chúng đều là số nguyên tố. 2. Trên hình chữ nhật ABCD, điểm M là trung điểm của cạnh CD và điểm N là một điểm trên đường chéo AC sao cho góc BNM bằng 90 độ. Gọi F là điểm đối xứng của A qua N. Chứng minh rằng đoạn thẳng FB vuông góc với AC. 3. Trong tam giác ABC vuông tại A, từ trung điểm E của cạnh AC kẻ đường thẳng EF vuông góc với BC (trong đó F thuộc BC). Đường thẳng AF cắt BE tại điểm O. a) Chứng minh rằng độ dài đoạn thẳng AF bằng BE nhân cosin của góc C. b) Biết BC = 10cm, sinC = 0,6. Hãy tính diện tích của tứ giác ABFE. c) Tính giá trị của sinA đối với tam giác AO B.
Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 trường THCS Đặng Thai Mai Nghệ An
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 trường THCS Đặng Thai Mai Nghệ An Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 năm 2023 – 2024 trường THCS Đặng Thai Mai – Nghệ An Đề học sinh giỏi Toán lớp 9 năm 2023 – 2024 trường THCS Đặng Thai Mai – Nghệ An Xin chào quý thầy cô và các em học sinh lớp 9! Đây là bộ đề kiểm tra học sinh giỏi môn Toán lớp 9 năm học 2023 – 2024 tại trường THCS Đặng Thai Mai, thành phố Vinh, tỉnh Nghệ An. Bộ đề này bao gồm các câu hỏi đa dạng và phong phú, đồng thời cung cấp đáp án và hướng dẫn chấm điểm chi tiết. Dưới đây là một số câu hỏi trong đề thi: Cho hai số nguyên dương \(a\), \(b\) thỏa mãn \(a > b\) và \(a^2 + b^2 + 1 = 2(ab + a + b)\). Chứng minh \(a\), \(b\) là hai số chính phương liên tiếp. Cho tam giác nhọn \(ABC\) có đường cao \(AH\). Gọi \(E\), \(F\) lần lượt là các điểm thuộc các tia \(HC\), \(HB\) sao cho \(EAB = FAC = 90^\circ\). Hãy chứng minh những điều đề ra trong phần b của câu hỏi này. Cho năm số nguyên dương đôi một phân biệt sao cho mỗi số trong chúng không có ước nguyên tố nào khác 2 và 3. Chứng minh rằng trong năm số đó tồn tại hai số mà tích của chúng là một số chính phương. Đề thi này không chỉ giúp học sinh rèn luyện kỹ năng giải các bài toán phức tạp mà còn khuyến khích họ phát huy sự sáng tạo và logic trong việc giải quyết vấn đề. Chúc quý thầy cô và các em học sinh có kỳ thi thành công!
Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Thạch Thất Hà Nội
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Thạch Thất Hà Nội Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm 2023 - 2024 phòng GD&ĐT Thạch Thất - Hà Nội Đề thi học sinh giỏi Toán lớp 9 năm 2023 - 2024 phòng GD&ĐT Thạch Thất - Hà Nội Chào đón quý thầy cô giáo và các em học sinh lớp 9! Sytu xin giới thiệu đến bạn đề thi chọn học sinh giỏi môn Toán lớp 9 THCS cấp huyện năm học 2023 - 2024 của phòng Giáo dục và Đào tạo UBND huyện Thạch Thất, thành phố Hà Nội. Đề thi bao gồm đáp án và hướng dẫn chấm điểm chi tiết. Trích dẫn một số câu hỏi từ Đề học sinh giỏi Toán lớp 9 năm 2023 - 2024 phòng GD&ĐT Thạch Thất - Hà Nội: Cho điểm M di động trên đoạn thẳng AB sao cho M AB. Trên cùng một nửa mặt phẳng bờ AB có các hình vuông AMCD, BMEF. Giao điểm của hai đường chéo của mỗi hình vuông lần lượt là O, O'. Hãy chứng minh rằng AE BC. Gọi I là giao điểm của AC và BE. Chứng minh rằng I là trung điểm của đoạn thẳng DF và ba điểm H, D, F thẳng hàng. Cho tam giác đều ABC, điểm M nằm trong tam giác sao cho AM2 = BM2 + CM2. Hỏi số đo góc BMC là bao nhiêu? Đề thi này sẽ giúp các em ôn tập và nắm vững kiến thức để chuẩn bị tốt cho kỳ thi học sinh giỏi. Hãy tập trung và cố gắng hết mình để đạt kết quả tốt nhất! Hãy tham khảo và thực hành đề thi này để nắm vững kiến thức Toán lớp 9. Chúc các em thành công!