Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối HK1 Toán 10 năm 2021 - 2022 trường chuyên Nguyễn Tất Thành - Kon Tum

Ngày … tháng 12 năm 2021, trường THPT chuyên Nguyễn Tất Thành, tỉnh Kon Tum tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kỳ 1 năm học 2021 – 2022. Đề cuối HK1 Toán 10 năm 2021 – 2022 trường chuyên Nguyễn Tất Thành – Kon Tum được biên soạn theo hình thức đề thi 70% trắc nghiệm + 30% tự luận (theo điểm số), thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án trắc nghiệm và hướng dẫn giải tự luận Mã đề: 101 Mã đề: 102 Mã đề: 103 Mã đề: 104. Trích dẫn đề cuối HK1 Toán 10 năm 2021 – 2022 trường chuyên Nguyễn Tất Thành – Kon Tum : + Điều kiện cần và đủ để hai vectơ bằng nhau là: A. Hai vectơ cùng hướng. B. Hai vectơ ngược hướng và cùng độ dài. C. Hai vectơ cùng độ dài. D. Hai vectơ cùng hướng và cùng độ dài. + Trong các mệnh đề dưới đây, mệnh đề nào đúng? A. Đồ thị của hàm số lẻ nhận trục Ox làm trục đối xứng. B. Đồ thị của hàm số lẻ nhận trục Oy làm trục đối xứng. C. Đồ thị của hàm số lẻ không có trục đối xứng và không có tâm đối xứng. D. Đồ thị của hàm số lẻ nhận gốc tọa độ làm tâm đối xứng. + Cho vectơ u có độ dài bằng 3. Mệnh đề nào sau đây là đúng? A. Vectơ 2u có độ dài bằng 6 và cùng hướng với vectơ u. B. Vectơ 2u có độ dài bằng 6 và ngược hướng với vectơ u. C. Vectơ 2u có độ dài bằng 6 và cùng hướng với vectơ u. D. Vectơ 2u có độ dài bằng 6 và ngược hướng với vectơ u. + Cho 2 tập hợp A x x 1 0 và B x x 2 6. Hãy xác định và biểu diễn các tập hợp sau trên trục số A B A B C A. + Trong mặt phẳng tọa độ Oxy cho A C 2 3 0 1. Gọi N là điểm thuộc đoạn AC thỏa mãn AN NC 2. Tìm tọa độ điểm N.

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Lê Quý Đôn - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Lê Quý Đôn, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Lê Quý Đôn – TP HCM : + Cho a >= b. Chứng minh: a3 – b3 >= 3ab(a – b). + Cho tứ giác ABCD. Gọi E; F; I lần lượt là trung điểm AB; CD; EF. a) Chứng minh: AD + BC = 2EF. b) Gọi H; K lần lượt là trung điểm AD; BC. Tính: |IH + IK|. + Cho tam giác ABC có AB = 3, AC = 5, BAC = 120 độ. M thuộc cạnh BC sao cho BM = 2/7BC. a) Tính diện tích S và bán kính đường tròn ngoại tiếp R của tam giác ABC. b) Tính BA.BC và độ dài AM.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Thủ Khoa Huân - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Thủ Khoa Huân – TP HCM : + Bạn Nhi dùng 60 m lưới B40 rào thành một mảnh vườn hình chữ nhật để trồng hoa tết. Biết rằng một cạnh của vườn là bờ sông nên Nhi chỉ cần rào 3 cạnh còn lại của mảnh vườn hình chữ nhật. Theo em, bạn Nhi nên tính toán các kích thước của mảnh vườn như thế nào để diện tích trồng hoa là lớn nhất? Tính diện tích lớn nhất đó. + Xác định parabol (P): y = ax2 + bx + 2 biết (P) đi qua điểm A(2;4) và (P) nhận đường thẳng x = 5/6 làm trục đối xứng. + Tính diện tích tam giác MNP trong hình vẽ sau (biết G là trọng tâm của tam giác).
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Trần Nhân Tông - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Trần Nhân Tông, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Trần Nhân Tông – TP HCM : + Trong mặt phẳng toạ độ Oxy cho ba điểm A(4;2), B(-2;0), C(2;4). Chứng minh tam giác ABC vuông. + Trong mặt phẳng toạ độ Oxy cho ba điểm A(0;1 + √3), B(2;1 + √3) và đường thẳng (d): 3x – y – 2 = 0. Tìm điểm C trên đường thẳng (d) sao cho tam giác ABC là tam giác đều. + Cho phương trình x^2 – 2(1 – m)x – 4m + 4 = 0. Tìm điều kiện của tham số m để phương trình có hai nghiệm x1 và x2 thỏa mãn (x1 – x2)^2 + x1x2 = 16.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Trần Hữu Trang - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Trần Hữu Trang, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Trần Hữu Trang – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho A (0;1), B (5;1), C (2;5). Tìm tọa độ chân đường cao xuất phát từ đỉnh C. + Tìm m để phương trình x^2 – (m + 3)x + m + 2 = 0 có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 = 3×2. + Lập bảng biến thiên và vẽ parabol y = x^2 – 4x – 1.