Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kì 2 Toán 11 năm 2022 - 2023 trường THPT Lương Ngọc Quyến - Thái Nguyên

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kì 2 môn Toán 11 năm học 2022 – 2023 trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên; đề thi hình thức 70% trắc nghiệm + 30% tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề); đề thi có đáp án và hướng dẫn chấm điểm mã đề 111 112 113 114 115 116 117 118. Trích dẫn Đề cuối kì 2 Toán 11 năm 2022 – 2023 trường THPT Lương Ngọc Quyến – Thái Nguyên : + Khẳng định nào sau đây là đúng? A. Có nhiều đường thẳng đi qua một điểm cho trước và vuông góc với mặt phẳng cho trước. B. Có nhiều mặt phẳng đi qua một điểm cho trước và vuông góc với đường thẳng cho trước. C. Đường thẳng vuông góc với một mặt phẳng thì vuông góc với mọi đường thẳng nằm trong mặt phẳng. D. Nếu một đường thẳng vuông góc với hai đường thẳng cùng nằm trong một mặt phẳng thì nó vuông góc với mặt phẳng ấy. + Hãy cho biết mệnh đề nào sau đây là sai? Hai đường thẳng vuông góc nếu A. tích vô hướng giữa hai vectơ chỉ phương của chúng là bằng 0. B. góc giữa hai đường thẳng đó là 0 90. C. góc giữa hai vectơ chỉ phương của chúng là 0 0. D. góc giữa hai vectơ chỉ phương của chúng là 0 90. + Một vật chuyển động theo quy luật 1 3 2 9 3 s tt t với t tính bằng giây và s tính bằng mét. Tính vận tốc lớn nhất của vật đạt được trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 2 Toán 11 năm 2021 - 2022 trường Quốc tế Á Châu - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường TH – THCS – THPT Quốc tế Á Châu, thành phố Hồ Chí Minh.
Đề thi học kỳ 2 Toán 11 năm 2021 - 2022 trường THPT Bùi Thị Xuân - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh. Trích dẫn đề thi học kỳ 2 Toán 11 năm 2021 – 2022 trường THPT Bùi Thị Xuân – TP HCM : + Một vật chuyển động có phương trình 3 2 2 7 5 3 t S t t t trong đó t (tính bằng giây) là thời gian vật chuyển động kể từ lúc bắt đầu chuyển động (t > 0) và S (tính bằng mét) là quãng đường vật đi được trong khoảng thời gian t. Tính vận tốc của vật tại thời điểm mà vật có vận tốc nhỏ nhất. + Chứng minh phương trình 2 4 2 m m x x mx 4 2 3 0 luôn có nghiệm với mọi giá trị thực của tham số m. + Cho hình vuông ABCD cạnh a. Gọi I, J, K lần lượt là trung điểm các đoạn thẳng AB, BC, CD. Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại điểm I lấy điểm S sao cho tam giác SAB đều. a) Chứng minh mặt phẳng (SAB) vuông góc với mặt phẳng (ABCD) và tam giác SBC vuông. b) Chứng minh đường thẳng DJ vuông góc với mặt phẳng (SIC). c) Xác định và tính góc giữa đường thẳng SD với mặt phẳng (SAB). d) Tính khoảng cách giữa hai đường thẳng AB và SC theo a.
Đề thi học kỳ 2 Toán 11 năm 2021 - 2022 trường THPT Lý Thường Kiệt - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT Lý Thường Kiệt, thành phố Hồ Chí Minh. Trích dẫn đề thi học kỳ 2 Toán 11 năm 2021 – 2022 trường THPT Lý Thường Kiệt – TP HCM : + Cho hàm số 2 x y x có đồ thị (C). Viết phương trình tiếp tuyến của (C) tại điểm M(1;1). + Cho đường cong 3 1 1 x C y x. Viết phương trình tiếp tuyến của (C) biết rằng tiếp tuyến song song với đường thẳng d y x 4 1. + Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a; H là trung điểm của AB; SH vuông góc với mặt phẳng (ABCD) 6 2 a SA. a) Chứng minh: SBC SAB. b) Tính góc giữa đường thẳng SC và mặt phẳng (ABCD). c) Gọi M là trung điểm SA. Tính khoảng cách từ điểm M đến mặt phẳng (SCD).
Đề thi học kỳ 2 Toán 11 năm 2021 - 2022 trường THPT Tam Phú - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT Tam Phú, thành phố Hồ Chí Minh. Trích dẫn đề thi học kỳ 2 Toán 11 năm 2021 – 2022 trường THPT Tam Phú – TP HCM : + Tính đạo hàm các hàm số sau? + Viết phương trình tiếp tuyến với đường cong 3 2 C y x x 2 1 tại điểm có hoành độ x0 = −1. + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a SA a 3 SA ABCD a) Chứng minh: SAC SBD. b) Tính góc giữa hai mặt phẳng (SBC) và (ABCD). c) Gọi I là hình chiếu của A lên SC. Từ I lần lượt vẽ các đường thẳng song song với SB, SD cắt BC, CD tại P, Q. Gọi E là giao điểm của PQ và AB. Tính khoảng cách từ E đến mặt phẳng (SBD).