Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia năm 2018 - 2019 trường Lục Nam - Bắc Giang lần 1

Nhằm giúp các em học sinh sớm tiếp xúc với cấu trúc đề thi THPTQG 2019 môn Toán, trường THPT Lục Nam – Bắc Giang đã tiến hành biên soạn đề thi thử Toán THPT Quốc gia năm 2018 – 2019 lần 1 và tổ chức thi thử vào ngày hôm nay (01 tháng 11 năm 2018), đề có mã 132 gồm 5 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, yêu cầu học sinh hoàn thành trong thời gian 90 phút, nội dung đề không giới hạn trong chương trình Toán 12 mà có cả các câu hỏi và bài toán thuộc phần kiến thức Toán 10, Toán 11 – điều này hoàn toàn phù hợp với dự định của bộ GD và ĐT cho kỳ thi Toán năm nay (2019). Trích dẫn đề thi thử Toán THPT Quốc gia năm 2018 – 2019 trường Lục Nam – Bắc Giang lần 1 : + Trong không gian, cho đường thẳng a và hai mặt phẳng phân biệt (P) và (Q). Mệnh đề nào dưới đây đúng? A. Nếu (P) và (Q) cùng cắt a thì (P) song song với (Q). B. Nếu (P) và (Q) cùng song song với a thì (P) song song với (Q). C. Nếu (P) song song với (Q ) và a thuộc (P) thì a song song với (Q). D. Nếu (P) song song với (Q ) và a cắt (P) thì a song song với (Q). + Cho hàm số y = x^3 + 1, khẳng định nào dưới đây đúng? A. Hàm số nghịch biến trên khoảng (0;+∞). B. Hàm số luôn nghịch biến trên R . C. Hàm số luôn đồng biến trên R. D. Hàm số nghịch biến trên (-∞;0). + Xếp ngẫu nhiên 7 học sinh nam và 3 học sinh nữ ngồi xung quanh một bàn tròn, (hai cách xếp được gọi là như nhau nếu có một phép quay biến cách ngồi này thành cách ngồi kia). Tính xác suất để 3 học sinh nữ đó luôn ngồi cạnh nhau.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Thái Bình lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Thái Bình lần 1 gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi thử có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Độ giảm huyết áp của một bệnh nhân được cho bởi công thức G(x) = 0,035x^2(15 – x), trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất. A. x = 8 B. x = 10 C. x= 15 D. x = 7 [ads] + Một tấm kẽm hình vuông ABCD có cạnh bằng 30cm. Người ta gập tấm kẽm theo hai cạnh EF và GH cho đến khi AD và BC trùng nhau như hình vẽ bên để được một hình lăng trụ khuyết hai đáy. Giá trị của x để thể tích khối lăng trụ lớn nhất là? A. x = 5 cm B. x = 9 cm C. x = 8 cm D. x = 10 cm + Cho hàm số y = f(x) có đao hàm trên R. Đường cong trong hình vẽ bên là đồ thị của hàm số y = f'(x), (y = f'(x) liên tục trên R). Xét hàm số g(x) = f(x^2 – 2). Mệnh đề nào dưới đây sai? A. Hàm số g(x) nghịch biến trên (−∞; −2) B. Hàm số g(x) đồng biến trên (2; +∞) C. Hàm số g(x) nghịch biến trên (−1; 0) D. Hàm số g(x) nghịch biến trên (0; 2)
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Quang Trung - Bình Phước lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Quang Trung – Bình Phước lần 1 gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi : + Chọn phát biểu đúng. A. Các hàm số y = sin x, y = cos x, y = cot x đều là hàm số chẵn B. Các hàm số y = sin x, y = cos x, y = cot x đều là hàm số lẻ C. Các hàm số y = sin x, y = cot x, y = tan x đều là hàm số chẵn D. Các hàm số y = sin x, y = cot x, y = tan x đều là hàm số lẻ + Trên tập số phức, cho phương trình: az^2 + bz + c = 0 (a, b, c ∈ R). Chọn kết luận sai. A. Nếu b = 0 thì phương trình có hai nghiệm mà tổng bằng 0 B. Nếu Δ = b^2 – 4ac < 0 thì phương trình có hai nghiệm mà modun bằng nhau C. Phương trình luôn có hai nghiệm phức là liên hợp của nhau D Phương trình luôn có nghiệm + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, K lần lượt là trung điểm của CD, CB, SA. Thiết diện của hình chóp cắt bởi mặt phẳng (MNK) là một đa giác (H). Hãy chọn khẳng định đúng. A. (H) là một hình thang B. (H) là một ngũ giác C. (H) là một hình bình hành D. (H) là một tam giác
Đề thi thử THPT Quốc gia 2018 môn Toán - Đoàn Trí Dũng, Hà Hữu Hải lần 4
Đề thi thử THPT Quốc gia 2018 môn Toán lần 4 do thầy Đoàn Trí Dũng, Hà Hữu Hải biên soạn, đề thi gồm 50 câu hỏi trắc nghiệm, có đáp án và lời giải chi tiết các câu hỏi phân loại . Trích dẫn đề thi : + Cho hình trụ có các đáy là hai hình tròn tâm I và I’, bán kính đáy bằng chiều cao và bằng a. Trên đường tròn đáy tâm I lấy điểm A, trên đường tròn đáy tâm I’ lấy điểm B sao cho AB = 2a. Tính tỷ số thể tích của khối trụ và khối tứ diện II’AB. + Khi nuôi cá thí nghiệm trong hồ, một nhà sinh vật học thấy rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ cân nặng P(n) = 480 – 20n (gam). Hỏi phải thả bao nhiêu con cá trên một đơn vị diện tích của mặt hồ để sau một vụ thu hoạch được nhiều cá nhất? [ads] A. 10 B. 12 C. 16 D. 24 + Một chiếc thùng đựng nước hình trụ có bán kính đáy 20cm, bên trong đựng một lượng nước. Biết rằng khi nghiêng thùng sao cho đường sinh của hình trụ tạo với mặt đáy góc 45 độ cho đến khi nước lặng, thì mặt nước chạm vào hai điểm A và B nằm trên hai mặt đáy như hình vẽ bên. Hỏi thùng đựng nước có thể tích là bao nhiêu cm3?A. 16000π B. 12000π C. 8000π D. 6000π
Đề thi thử THPT Quốc gia 2018 môn Toán Nguyễn Phú Khánh lần 2
Đề thi thử THPT Quốc gia 2018 môn Toán – Nguyễn Phú Khánh lần 2 gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Khi nói về hàm số y = (x^2 + (m + 1)x + m + 1)/(x + 1), m là tham số, phát biểu nào sau đây là sai? A. Đồ thị hàm số luôn có điểm cực đại, cực tiểu và khoảng cách giới hạn điểm đó bằng 2√5 B. Gọi y1 và y2 là các giá trị cực đại và cực tiểu của hàm số, khi đó số trị biểu thức y2 – y1 không phụ thuộc tham số m C. Tồn tại duy nhất giá trị thực của m để điểm cực đại, cực tiểu của đồ thị cách đều gốc tọa độ O D. Tồn tại duy nhất giá trị thực của m để điểm cực đại, cực tiểu của đồ thị cùng với gốc tọa độ tạo thành tam giác vuông tại O + Có bao nhiêu phát biểu đúng về hàm số f(x) = x^4 – 2x^2 + 3 trên đoạn [-1; 1]? [ads] I. Hàm số y = f(x) + 2017 đồng biến trên khoảng (-1; 0) II. Hàm số y = 2017.f(x) đồng biến trên khoảng (-1; 0) III. Hàm số y = -2017.f(x) nghịch biến trên khoảng (-1; 0) IV. Hàm số y = f(x) nghịch biến trên khoảng (a; b) thì số trị của b^7 – a^3 nằm trong khoảng (0; 2) V. Hàm số y = f(x) đồng biến trên khoảng (c; d) thì c^2017 + d^2016 < 0 + Trong không gian với hệ tọa độ Oxyz, cho điểm M(3; -1; 2). Trong các phát biểu sau, phát biểu nào sai? A. Tọa độ hình chiếu của M trên mặt phẳng (xOy) là M'(3; -1; 0) B. Tọa độ hình chiếu của M trên trục Oz là M'(0;0;2) C. Tọa độ đối xứng của M qua gốc tọa độ O là M'(-3; 1; -2) D. Khoảng cách từ M đến gốc tọa độ O bằng 14^1/3