Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra Toán 9 thi vào 10 năm 2024 - 2025 đợt 2 phòng GDĐT Ứng Hòa - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra rà soát chất lượng học sinh môn Toán 9 chuẩn bị thi vào lớp 10 năm học 2024 – 2025 đợt 2 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề kiểm tra Toán 9 thi vào 10 năm 2024 – 2025 đợt 2 phòng GD&ĐT Ứng Hòa – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một ca nô xuôi dòng trên một khúc sông dài 90 km rồi ngược dòng về 63 km. Biết thời gian xuôi dòng ít hơn thời gian ngược dòng là 1 giờ và vận tốc khi xuôi dòng hơn vận tốc ngược dòng là 6km/h. Tính vận tốc ca nô lúc xuôi dòng và lúc ngược dòng. + Một hình nón có bán kính đáy bằng 5 cm và diện tích xung quanh là 65pi cm2. Tính thể tích của khối nón đó (làm tròn kết quả đến chữ số thập phân thứ hai). + Trong hệ tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2mx + 3. a. Tìm các điểm nằm trên parabol (P) có tung độ bằng 4. b. Tìm m để (d) cắt (P) tại hai điểm phân biệt A và B sao cho SAOB = 6 (đvdt).

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Hòa Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Hòa Bình; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Hòa Bình : + Cho tam giác ABC vuông tại A, đường cao AH, biết HB cm 2, HC cm 8. Tính độ dài các cạnh AB AC. + Một ô tô và một xe máy khởi hành cùng một lúc từ hai tỉnh cách nhau 200km, đi ngược chiều và gặp nhau sau 2 giờ. Tìm vận tốc của ô tô và xe máy, biết rằng nếu vận tốc của ô tô tăng thêm 10 km h và vận tốc của xe máy giảm đi 5 km h thì vận tốc của ô tô bằng 2 lần vận tốc của xe máy. + Cho hình vuông ABCD, các điểm M N thay đổi trên các cạnh BC CD sao cho góc MAN bằng 45° (M N không trùng với các đỉnh của hình vuông). Gọi P Q lần lượt là giao điểm của AM AN với BD. Chứng minh rằng: 1) Tứ giác ABMQ và tứ giác MNQP là các tứ giác nội tiếp. 2) NA là phân giác của góc MND. 3) MN tiếp xúc với một đường tròn cố định.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT Hải Phòng; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm (bản chính thức do sở Giáo dục và Đào tạo thành phố Hải Phòng công bố). Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Bạn Nam hiện có 50000 đồng. Để phục vụ cho việc học tập, bạn muốn mua một quyển sách tham khảo Toán có giá 150000 đồng. Vì thế, bạn Nam đã lên kế hoạch mỗi ngày tiết kiệm 5000 đồng. Gọi số tiền bạn Nam tiết kiệm được sau x (ngày) (gồm cả tiền hiện có và tiền tiết kiệm được hàng ngày) là y (đồng). a) Lập công thức tính y theo x. b) Hỏi sau bao nhiêu ngày bạn Nam có vừa đủ tiền để mua được quyển sách tham khảo Toán? + Bài toán có nội dung thực tế: Lúc 9 giờ sáng, một xe ô tô khởi hành từ A đến B với vận tốc không đổi trên cả quãng đường là 55 km/h. Sau khi xe ô tô này đi được 20 phút thì cũng trên quãng đường đó, một xe ô tô khác bắt đầu đi từ B về A với vận tốc không đổi trên cả quãng đường là 45km/h. Hỏi hai xe ô tô đó gặp nhau lúc mấy giờ? Biết quãng đường AB dài 135 km. + Một vật thể đặc bằng kim loại dạng hình trụ có bán kính đường tròn đáy và chiều cao đều bằng 6 cm. Người ta khoan xuyên qua hai mặt đáy của vật thể đó theo phương vuông góc với mặt đáy, phần bị khoan là một lỗ hình trụ có bán kính đường tròn đáy bằng 2 cm (Hình 1). Tính thể tích phần còn lại của vật thể đó.
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2021 - 2022 sở GDĐT Bến Tre
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 THPT công lập môn Toán (chung) năm học 2021 – 2022 sở GD&ĐT Bến Tre; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chung) năm 2021 – 2022 sở GD&ĐT Bến Tre : + Cho đường tròn O và điểm M sao cho OM = 6cm. Từ điểm M kẻ hai tiếp tuyến MA và MB đến đường tròn O (A và B là các tiếp điểm). Trên đoạn thẳng OA lấy điểm D (D khác A và O), dựng đường thẳng vuông với OA tại D và cắt MB tại E. a) Chứng minh tứ giác ODEB nội tiếp đường tròn. b) Tứ giác ADEM là hình gì? Vì sao? c) Gọi K là giao điểm của đường thẳng MO và O sao cho điểm O nằm giữa điểm M và điểm K. Chứng minh tứ giác AMBK là hình thoi. + Dựa vào hình bên, hãy: a) Viết ra tọa độ các điểm M và P. b) Xác định hoành độ điểm N. c) Xác định tung độ điểm Q. +  Cho đường thẳng 5 6 2021 d y m x với m là tham số. a) Điểm O(0;0) có thuộc d không? Vì sao? b) Tìm các giá trị của m để d song song với đường thẳng: y x 4 5.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội : + Cho A B là hai điểm cố định nằm trên đường tròn tâm O, bán kính R. Giả sử C là điểm cố định trên tia đối của tia BA. Một cát tuyến thay đổi qua C cắt đường tròn (O) tại D và E (D nằm giữa C E). Các đường tròn ngoại tiếp các tam giác BCD và ACE cắt nhau tại giao điểm thứ hai M. Biết rằng bốn điểm OBME tạo thành tứ giác OBME. Chứng minh rằng: a) Tứ giác OBME nội tiếp. b) 2 2 CD CE CO R. c) M luôn di chuyển trên một đường tròn cố định. + Tìm tất cả các số nguyên dương N sao cho N có thể biểu diễn một cách duy nhất ở dạng 2 1 1 x y xy với x y là hai số nguyên dương. + Cho a, b, c là ba số nguyên dương sao cho mỗi số trong ba số đó đều biểu diễn được dưới dạng lũy thừa của 2 với số mũ tự nhiên. Biết rằng phương trình bậc hai 2 ax bx c 0 (1) có cả hai nghiệm đều là số nguyên. Chứng minh rằng hai nghiệm của phương trình (1) bằng nhau.