Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Khánh Hòa

Thứ Năm ngày 03 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Khánh Hòa tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Khánh Hòa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Khánh Hòa : + Theo kế hoạch, Công an tỉnh Khánh Hòa sẽ cấp 7200 thẻ Căn cước công dân cho địa phương A. Một tổ công tác được điều động đến địa phương A để cấp thẻ Căn cước công dân trong một thời gian nhất định. Khi thực hiện nhiệm vụ, tổ công tác đã cải tiến kĩ thuật nên mỗi ngày đã cấp tăng thêm được 40 thẻ Căn cước so với kế hoạch. Vì vậy, tổ công tác đã hoàn thành nhiệm vụ sớm hơn kế hoạch 2 ngày. Hỏi theo kế hoạch ban đầu, mỗi ngày tổ công tác sẽ cấp được bao nhiêu thẻ Căn cước? + Cho tam giác ABC có ba góc nhọn, nội tiếp trong đường tròn O R và hai đường cao BE CF cắt nhau tại H. a) Chứng minh BCEF là tứ giác nội tiếp đường tròn. b) Chưng minh OA EF. c) Hai đường thẳng BE, CF lần lượt cắt đường tròn (O) tại điểm thứ hai là N và P. Đường thẳng AH cắt đường tròn (O) tại điểm thứ hai là M và cắt BC tại D. Tính giá trị biểu thức AM BN CP AD BE CF. + Trên mặt phẳng tọa độ, cho parabol 2 P y x và đường thẳng 2 2 2 d y x m m (m là tham số). a) Biết A là một điểm thuộc P và có hoành độ 2 A x. Xác định tọa độ điểm A. b) Tìm tất cả các giá trị của m để d cắt P tại hai điểm phân biệt. c) Xác định tất cả các giá trị của m để d cắt P tại hai điểm phân biệt có hoành độ lần lượt là 1 x và 2 x thỏa mãn điều kiện 2 1 2 x x m 2 3.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT TP Hồ Chí Minh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT TP Hồ Chí Minh : + Cửa hàng A niêm yết giá một bông hồng là 15000 đồng. Nếu khách hàng mua nhiều hơn 10 bông thì từ bông thứ 11 trở đi, mỗi bông được giảm 10% trên giá niêm yết. Nếu mua nhiều hơn 20 bông thì từ bông thứ 21 trở đi, mỗi bông được giảm thêm 20% trên giá đã giảm. Nếu khách hàng mua 30 bông hồng tại cửa hàng A thì phải trả bao nhiêu tiền? Bạn Thảo đã mua một số bông hồng tại cửa hàng A với số tiền là 555 000 đồng. Hỏi bạn Thảo đã mua bao nhiêu bông hồng? + Chị Lan đun sôi nước bằng ấm điện. Biết rằng mối liên hệ giữa công suất hao phí P(W) của ấm điện và thời gian đun t (giây) được mô hình hóa bởi một hàm số bậc nhất có dạng P = at + b và có đồ thị như hình bên. a) Hãy xác định các hệ số a và b. b) Nếu đun nước với công suất hao phí là 105(W) thì thời gian đun là bao lâu? + Bạn Nam cần chuẩn bị một số hộp nước trái cây có lượng nước trong mỗi hộp là 1,2 lít. Biết rằng buổi tiệc sinh nhật có 14 người (đã bao gồm Nam). Nếu mỗi người trung bình uống 3 ly nước trái cây và lượng nước rót bằng 90% thể tích ly thì bạn Nam cần chuẩn bị ít nhất bao nhiêu hộp nước trái cây? Biết 1 lít = 1000 cm3.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Bình Phước
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra vào 07/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Bình Phước : + Cho p là số nguyên tố lớn hơn 3. Chứng minh (p – 1)(p + 1) chia hết cho 24. + Cho đoạn thẳng AB và C là điểm nằm trên đoạn AB sao cho BC > AC. Trên cùng một nửa mặt phẳng bờ là đường thẳng AB, vẽ nửa đường tròn đường kính AB và nửa đường tròn đường kính BC. Lấy điểm M thuộc nửa đường tròn đường kính BC (M khác B, M khác C). Kẻ MH vuông góc với BC (H thuộc BC), đường thẳng MH cắt nửa đường tròn đường kính AB tại K. Hai đường thẳng AK và CM cắt nhau tại E. a) Chứng minh tứ giác BMKE nội tiếp và BE2 = BA.BC. b) Từ C kẻ CN vuông góc với AB (N thuộc nửa đường tròn đường kính AB), gọi P là giao điểm của NK và CE. Chứng minh rằng tâm đường tròn nội tiếp của các tam giác BNE và PNE cùng nằm trên đường thẳng BP. + Cho một bảng gồm 2023 hàng, 2023 cột. Các hàng được đánh số từ 1 đến 2023 từ trên xuống dưới; các cột đánh số từ 1 đến 2023 từ trái qua phải. Viết các số tự nhiên liên tiếp 0, 1, 2, … vào các ô của bảng theo đường chéo zic-zắc (như hình vẽ bên). Hỏi số 2024 được viết ở hàng nào, cột nào? Vì sao?
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT TP Hồ Chí Minh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 06 tháng 06 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT TP Hồ Chí Minh : + Cho tam giác ABC vuông tại A (AB < AC), có đường cao AH. Đường tròn tâm I nội tiếp tam giác ABC, tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi J là giao điểm của AI và DE; K là trung điểm của AB. a) Chứng minh tứ giác BIJD nội tiếp. b) Gọi M là giao điểm của KI và AC, N là giao điểm của AH và ED. c) Gọi Q là giao điểm của DI và EF, P là trung điểm của BC. Chứng minh ba điểm A, P, Q thẳng hàng. + Cho đường tròn tâm O nội tiếp hình thoi ABCD. Gọi E, F, G, H là các điểm lần lượt thuộc các cạnh AB, BC, CD, DA sao cho EF, GH cùng tiếp xúc với (O). a) Chứng minh CG·AH = AO2. b) Chứng minh EH song song FG. + Xét các số nguyên a < b < c thỏa mãn n = a3 + b3 + c3 − 3abc là số nguyên tố. a) Chứng minh: a < 0. b) Tìm tất cả các số nguyên dương a, b, c (a < b < c) sao cho n là ước của 2023.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên Toán & Tin học) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào ngày 06 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Bình Định : + Cho phương trình bậc hai: x2 + 2(m − 1)x − 2m = 0 (m là tham số). Chứng minh phương trình đã cho luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m. Tìm các giá trị của m để hai nghiệm x1, x2 thoả |x1 + 1| = |x2 + 1|. + Cho tam giác nhọn ABC nội tiếp đường tròn (O) có AB > AC. Các tiếp tuyến tại B, C của (O) cắt nhau tại P, đường thẳng AP cắt đường tròn (O) tại Q (khác A). Gọi M là trung điểm BC. Kẻ đường cao AH của tam giác ABC. 1. Chứng minh tứ giác BOCP nội tiếp và HAB = 90° – 1/2.AOC. 2. Chứng minh HAB = OAC và QB/MC = AB/AM. 3. Gọi D, E, F lần lượt là hình chiếu vuông góc của Q lên BC, CA, AB. Chứng minh rằng D là trung điểm EF. + Cho hình vuông có cạnh bằng 20. Bên trong hình vuông này chọn 2023 điểm phân biệt (không nằm trên các cạnh của hình vuông). Xét tập hợp A có 2027 điểm gồm 4 đỉnh của hình vuông và 2023 điểm đã chọn. Chứng minh rằng tồn tại ít nhất một tam giác có 3 đỉnh thuộc A với diện tích nhỏ hơn 1/10.