Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Hậu Giang

Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Hậu Giang Bản PDF - Nội dung bài viết Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022-2023 sở GD&ĐT Hậu Giang Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022-2023 sở GD&ĐT Hậu Giang Sytu xin chào đến các thầy cô và các em học sinh lớp 9! Hôm nay, chúng ta sẽ cùng tìm hiểu về đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Hậu Giang. Đề thi bao gồm các câu hỏi sau: + Bài 1: Cho đa thức \(f(x) = x^4 - 3x^3 + mx + n\) với \(m\) và \(n\) là các số thực. Hãy phân tích đa thức \(P(x) = x^2 - 4x + 3\) thành nhân tử và tìm các giá trị của \(m\) và \(n\) sao cho \(f(x)\) chia hết cho \(P(x)\). + Bài 2: Trong mặt phẳng Oxy, đường thẳng \(y = 2mx + m + 2\) cắt parabol \(y = -x^2\) tại hai điểm phân biệt có hoành độ thỏa mãn. Hãy tìm tất cả các giá trị của tham số \(m\). + Bài 3: Xác định điểm \(D\) sao cho tứ giác \(ABCD\) nội tiếp, điểm \(E\) là điểm cắt giữa \(BC\) và đường tròn có đường kính \(NC\). Chứng minh \(ABN = AEN\), \(NE\) là tia phân giác của góc \(AED\) và ba điểm \(A\), \(B\), \(F\) thẳng hàng nếu \(EN\) cắt \(CD\) tại \(F\). Đây là một đề thi đầy thách thức và đa dạng, hy vọng các em học sinh sẽ rèn luyện và chuẩn bị tốt để vượt qua thử thách này. Chúc các em học tốt và thành công!

Nguồn: sytu.vn

Đọc Sách

Đề HSG Toán 9 cấp huyện năm 2018 - 2019 phòng GDĐT Yên Lạc - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề HSG Toán 9 cấp huyện năm 2018 – 2019 phòng GD&ĐT Yên Lạc – Vĩnh Phúc; đề thi có đáp án + lời giải chi tiết + thang điểm. Trích dẫn đề HSG Toán 9 cấp huyện năm 2018 – 2019 phòng GD&ĐT Yên Lạc – Vĩnh Phúc : + Cho các số thực x, y thoả mãn. Chứng minh rằng tích xy là một số không dương. + Cho tam giác ABC vuông tại A. Các đường trung tuyến AD và BE vuông góc với nhau tại G. Biết AB 6 cm, tính cạnh huyền BC. + Tổng của n số nguyên dương không nhất thiết phân biệt là 100. Tổng của 7 số trong số chúng nhỏ hơn 15. Tìm giá trị nhỏ nhất của n?
Đề học sinh giỏi huyện Toán 9 năm 2018 - 2019 phòng GDĐT Nậm Nhùn - Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2018 – 2019 phòng GD&ĐT Nậm Nhùn – Lai Châu; kỳ thi được diễn ra vào ngày 13 tháng 01 năm 2019.
Đề học sinh giỏi Toán 9 cấp trường năm 2017 - 2018 trường THCS Sông Trí - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát đội tuyển học sinh giỏi môn Toán 9 cấp trường năm học 2017 – 2018 trường THCS Sông Trí, thị xã Kỳ Anh, tỉnh Hà Tĩnh; đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề học sinh giỏi Toán 9 cấp trường năm 2017 – 2018 trường THCS Sông Trí – Hà Tĩnh : + Giả sử D là một điểm nằm trong tam giác nhọn ABC sao cho 0 ADB ACB 90 và AC BD AD BC. Chứng minh rằng 2 AB CD AC BD. + Cho tam giác ABC. Biết rằng tồn tại hai điểm M N lần lượt trên các cạnh AB BC sao cho 2 BM BN AM CN và BNM ANC. Chứng minh rằng tam giác ABC vuông? + Cho tam giác ABC vuông tại A, đường cao AH, đường phân giác AD. Biết BH = 63 cm; CH = 112 cm. Tính HD.
Đề khảo sát HSG lần 1 Toán 9 năm 2017 - 2018 trường THCS Thanh Lãng - Vĩnh Phúc
Đề khảo sát HSG lần 1 Toán 9 năm 2017 – 2018 trường THCS Thanh Lãng – Vĩnh Phúc gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG lần 1 Toán 9 năm 2017 – 2018 trường THCS Thanh Lãng – Vĩnh Phúc : + Cho đa thức P(x) = ax3 + bx2 + cx + d với a, b, c, d là các hệ số nguyên. Chứng minh rằng nếu P(x) chia hết cho 5 với mọi giá trị nguyên của x thì các hệ số a, b, c, d đều chia hết cho 5. + Cho ABC nhọn, có ba đường cao AD, BI, CK cắt nhau tại H. Gọi chân các đường vuông góc hạ từ D xuống AB, AC lần lượt là E và F. a) Chứng minh rằng: AE.AB = AF.AC b) Giả sử HD = 1 3 AD. Chứng minh rằng: tanB.tanC = 3 c) Gọi M, N lần lượt là chân đường vuông góc kẻ từ D đến BI và CK. Chứng minh rằng: 4 điểm E, M, N, F thẳng hàng. + Cho a, b, c là 3 số dương thỏa mãn điều kiện 1 1 1 2 a + b + 1 b + c + 1 c + a + 1 Tìm giá trị lớn nhất của tích (a + b)(b + c)(c + a).