Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết, các dạng toán và bài tập môn Toán 8

Tài liệu gồm 551 trang, tóm tắt lý thuyết, các dạng toán và bài tập môn Toán 8, có đáp án và lời giải chi tiết. Mục lục : Phần I Đại số. Chương 1. Phép nhân và phép chia đa thức 2. 1. Nhân đơn thức với đa thức 2. 2. Nhân đa thức với đa thức 8. 3. Những hằng đẳng thức đáng nhớ (phần 1) 13. 4. Những hằng đẳng thức đáng nhớ (phần 2) 22. 5. Những hằng đẳng thức đáng nhớ (phần 3) 28. 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung 34. 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức 41. 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử 52. 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp 64. 10. Chia đơn thức cho đơn thức 73. 11. Chia đa thức cho đơn thức 81. 12. Chia đa thức một biến đã sắp xếp 88. 13. Ôn tập chương 1 101. Chương 2. Phân thức đại số 118. 1. Phân thức đại số 118. 2. Tính chất cơ bản của phân thức 124. 3. Rút gọn phân thức 134. 4. Quy đồng mẫu thức nhiều phân thức 139. 5. Phép cộng các phân thức đại số 146. 6. Phép trừ các phân thức đại số 156. 7. Phép nhân các phân thức đại số 165. 8. Phép chia các phân thức đại số 171. 9. Biến đổi biểu thức hữu tỉ. Giá trị của phân thức 175. 10. Ôn tập chương II (phần 1) 184. 11. Ôn tập chương II (phần 2) 191. Chương 3. Phương trình bậc nhất một ẩn 196. 1. Mở đầu về phương trình 196. 2. Phương trình bậc nhất một ẩn và cách giải 202. 3. Phương trình đưa được về dạng ax + b = 0 214. 4. Phương trình tích 228. 5. Phương trình chứa ẩn ở mẫu 238. 6. Giải bài toán bằng cách lập phương trình 246. Chương 4. Bất phương trình 254. 1. Liên hệ giữa thứ tự và phép cộng 254. 2. Liên hệ giữa thứ tự và phép nhân 260. 3. Bất phương trình một ẩn 264. 4. Bất phương trình bậc nhất một ẩn 269. 5. Phương trình chứa dấu giá trị tuyệt đối 282. 6. Ôn tập chương IV 297. Phần II Hình học. Chương 1. Tứ giác 306. 1. Tứ giác 306. 2. Hình thang 312. 3. Hình thang cân 318. 4. Đường trung bình của tam giác, của hình thang 324. 5. Đối xứng trục 331. 6. Hình bình hành 337. 7. Đối xứng tâm 344. 8. Hình chữ nhật 349. 9. Đường thẳng song song với một đường thẳng cho trước 358. 10. Hình thoi 364. 11. Hình vuông 371. 12. Ôn tập chương 1 378. Chương 2. Đa giác. Diện tích đa giác 386. 1. Đa giác. Đa giác đều 386. 2. Diện tích hình chữ nhật 392. 3. Diện tích tam giác 398. 4. Diện tích hình thang 404. 5. Diện tích hình thoi 410. 6. Diện tích đa giác 414. 7. Ôn tập chương II 417. Chương 3. Tam giác đồng dạng 422. 1. Định lý Ta-lét 422. 2. Định lý đảo và hệ quả của định lý Ta-lét 428. 3. Tính chất của đường phân giác của tam giác 436. 4. Khái niệm hai tam giác đồng dạng 443. 5. Trường hợp đồng dạng thứ nhất 449. 6. Trường hợp đồng dạng thứ hai 453. 7. Trường hợp đồng dạng thứ ba 458. 8. Các trường hợp đồng dạng của tam giác vuông 463. 9. Ôn tập chương III 469. Chương 4. Hình lăng trụ đứng. Hình chóp đều 479. 1. Hình hộp chữ nhật 479. 2. Thể tích của hình hộp chữ nhật 488. 3. Hình lăng trụ đứng 494. 4. Diện tích xung quanh và thể tích hình lăng trụ đứng 503. 5. Hình chóp đều và hình chóp cụt đều 511. 6. Diện tích xung quanh và thể tích của hình chóp đều 517. 7. Ôn tập chương 4 523. 8. Đề kiểm tra chương 4 528.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trường hợp đồng dạng thứ hai
Nội dung Chuyên đề trường hợp đồng dạng thứ hai Bản PDF - Nội dung bài viết Chuyên đề trường hợp đồng dạng thứ hai Chuyên đề trường hợp đồng dạng thứ hai Bộ tài liệu này bao gồm 11 trang chứa các kiến thức chính cần phải nắm vững về trường hợp đồng dạng thứ hai, hướng dẫn cách phân loại và giải các dạng toán, cũng như lựa chọn các bài tập từ dễ đến khó về chuyên đề này. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết, giúp học sinh hiểu rõ hơn trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. Tóm tắt lý thuyết: Bao gồm các kiến thức cơ bản về chuyên đề trường hợp đồng dạng thứ hai. II. Bài tập và các dạng toán: Dạng 1. Chứng minh hai tam giác đồng dạng: Phương pháp giải: Bước 1: Xác định hai tam giác cần chứng minh, chọn ra hai góc bằng nhau và chứng minh (nếu cần). Bước 2: Tính tỉ số các cạnh tạo nên mỗi góc, sau đó chứng minh chúng bằng nhau. Bước 3: Dựa vào kết quả từ bước 2, chứng minh hai tam giác đồng dạng. Dạng 2. Sử dụng các trường hợp đồng dạng thứ hai: Phương pháp giải: Sử dụng các trường hợp đồng dạng thứ hai để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc các cặp cạnh tương ứng còn lại bằng nhau. Thông qua các bài tập và hướng dẫn chi tiết, tài liệu này sẽ giúp học sinh nắm vững kiến thức về trường hợp đồng dạng thứ hai trong Hình học và áp dụng chúng vào việc giải các bài tập thực hành.
Chuyên đề trường hợp đồng dạng thứ nhất
Nội dung Chuyên đề trường hợp đồng dạng thứ nhất Bản PDF - Nội dung bài viết Tài liệu Chuyên đề trường hợp đồng dạng thứ nhất: Tam giác đồng dạng Tài liệu Chuyên đề trường hợp đồng dạng thứ nhất: Tam giác đồng dạng Tài liệu này bao gồm 09 trang, tập trung vào lý thuyết cần đạt, phân loại dạng toán và hướng dẫn giải các bài toán liên quan đến chuyên đề trường hợp đồng dạng thứ nhất. Nội dung của tài liệu được chia thành hai phần chính. I. Tóm tắt lý thuyết: Phần này tập trung vào việc giải thích cách chứng minh hai tam giác đồng dạng. Phương pháp giải được đưa ra thông qua việc so sánh tỉ số các cạnh tương ứng của hai tam giác và chứng minh chúng bằng nhau. Điều cần chứng minh sẽ được tự nhiên suy ra từ đó. II. Bài tập và các dạng toán: Phần này cung cấp các dạng bài tập từ cơ bản đến nâng cao liên quan đến trường hợp đồng dạng thứ nhất. Mỗi dạng bài tập được kèm theo phương pháp giải chi tiết và hướng dẫn cụ thể. Những bài tập được lựa chọn đảm bảo sự đa dạng và phong phú, từ việc chứng minh hai tam giác đồng dạng đến việc tính độ dài các cạnh và chứng minh các góc bằng nhau sử dụng trường hợp đồng dạng thứ nhất. Tài liệu này sẽ là một công cụ hữu ích trong quá trình học tập chương trình Hình học lớp 8, đặc biệt trong chương 3 về tam giác đồng dạng. Với đáp án và lời giải chi tiết, học sinh sẽ được hỗ trợ đầy đủ để hiểu rõ và áp dụng các kiến thức cần thiết. Đồng thời, cách trình bày linh hoạt và dễ hiểu trong tài liệu cũng giúp người đọc dễ dàng tiếp cận và áp dụng kiến thức vào thực tế.
Chuyên đề khái niệm hai tam giác đồng dạng
Nội dung Chuyên đề khái niệm hai tam giác đồng dạng Bản PDF - Nội dung bài viết Chuyên đề khái niệm hai tam giác đồng dạngKiến thức cơ bảnDạng bài tập cơ bản Chuyên đề khái niệm hai tam giác đồng dạng Chuyên đề này bao gồm 11 trang tài liệu, tóm tắt các khái niệm quan trọng về hai tam giác đồng dạng, phân loại dạng bài tập và hướng dẫn cách giải. Được tuyển chọn từ cơ bản đến nâng cao, các bài tập trong tài liệu giúp học sinh hiểu rõ về khái niệm hai tam giác đồng dạng. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết, giúp học sinh tự tin hơn trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. Kiến thức cơ bản Tài liệu tập trung vào những kiến thức cơ bản như cách vẽ tam giác đồng dạng với một tam giác cho trước và cách chứng minh hai tam giác đồng dạng. Học sinh sẽ được hướng dẫn xác định tỉ số đồng dạng và kẻ đường thẳng song song với một cạnh của tam giác. Dạng bài tập cơ bản Các dạng bài tập cơ bản trong tài liệu bao gồm việc vẽ tam giác đồng dạng, chứng minh hai tam giác đồng dạng thông qua việc sử dụng định nghĩa hoặc định lí. Học sinh cũng sẽ được hướng dẫn tính độ dài cạnh và tỉ số đồng dạng thông qua các tam giác đồng dạng. Trong tài liệu, cũng có dạng bài tập chứng minh đẳng thức cạnh thông qua các tam giác đồng dạng, giúp học sinh hiểu rõ hơn về khái niệm này.
Chuyên đề tính chất đường phân giác của tam giác
Nội dung Chuyên đề tính chất đường phân giác của tam giác Bản PDF - Nội dung bài viết Chuyên đề tính chất đường phân giác của tam giác Chuyên đề tính chất đường phân giác của tam giác Chuyên đề này bao gồm 11 trang tài liệu, cung cấp kiến thức cần thiết về trọng tâm, phân dạng và cách giải các dạng toán liên quan đến tính chất đường phân giác của tam giác. Tài liệu này đã được tuyển chọn kỹ lưỡng từ cơ bản đến nâng cao, phục vụ cho học sinh trong quá trình học tập chương trình Hình học lớp 8 chương 3: Tam giác đồng dạng. Kiến thức cơ bản: Định lý: Đường phân giác của một góc trong tam giác chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn đó. Chú ý: Định lý cũng đúng khi áp dụng cho đường phân giác góc ngoài của tam giác. Các định lý này cũng có thể được áp dụng theo hướng đối nghịch. Bài tập minh họa: Các bài tập được chia thành hai dạng cơ bản và nâng cao: Dạng bài cơ bản: Dạng 1: Tính độ dài của đoạn thẳng thông qua việc áp dụng tính chất đường phân giác, lập tỷ lệ thức và sử dụng đại số hóa hình học. Dạng 2: Tính tỉ số độ dài và diện tích giữa hai tam giác thông qua việc lập tỷ lệ thức và sử dụng kĩ thuật đại số hóa hình học. Công thức và kết quả được thu được từ công thức tính diện tích tam giác. Dạng bài nâng cao: Đây là phần bài tập mang tính chất phức tạp hơn, yêu cầu học sinh có kỹ năng và hiểu biết sâu hơn về tính chất đường phân giác của tam giác. Thông qua việc học chuyên đề này, học sinh sẽ nắm vững kiến thức cơ bản và có thể áp dụng vào các bài tập thực tế, giúp họ tự tin hơn khi giải các bài toán liên quan đến tam giác và đường phân giác.