Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết, các dạng toán và bài tập tứ giác

Tài liệu gồm 55 trang, tóm tắt lý thuyết, các dạng toán và bài tập tứ giác, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Hình học chương 1. Bài 1. Tứ giác. + Dạng 1. Tính góc của tứ giác. + Dạng 2. Vẽ tứ giác. + Dạng 3. Tính độ dài. Hệ thức giữa các độ dài. Bài 2. Hình thang. + Dạng 1. Tính góc của hình thang. + Dạng 2. Nhận biết hình thang, hình thang vuông. + Dạng 3. Tính toán và chứng minh về độ dài. Bài 3. Hình thang cân. + Dạng 1. Nhận biết hình thang cân. + Dạng 2. Sử dụng tính chất hình thang cân để tính số đo góc, độ dài đường thẳng. Bài 4. Đường trung bình của tam giác, của hình thang. + Dạng 1. Sử dụng đường trung bình của tam giác để tính độ dài và chứng minh các quan hệ về độ dài. + Dạng 2. Sử dụng đường trung bình của tam giác để chứng minh hai đường thẳng song song, chứng minh ba điểm thẳng hàng, tính góc. + Dạng 3. Sử dụng đường trung bình của hình thang để tính độ dài và chứng minh các quan hệ về độ dài. + Dạng 4. Sử dụng đường trung bình của hình thang để chứng minh hai đường thẳng song song, chứng minh ba đlểm thẳng hàng, tính góc. Bài 5. Dựng hình bằng thước và compa. Dựng hình thang. + Dạng 1. Dựng tam giác. + Dạng 2. Dựng hình thang. + Dạng 3. Dựng góc có số đo đặc biệt. + Dạng 4. Dựng tứ giác, dựng điểm hay đường thẳng thoả mãn một yêu cầu nào đó. Bài 6. Đối xứng trục. + Dạng 1. Vẽ hình, nhận biết hai hình đối xứng với nhau qua một trục. + Dạng 2. Sử dụng đối xứng trục để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. + Dạng 3. Tìm trục đối xứng của một hình, hình có trục đối xứng. + Dạng 4. Dựng hình, thực hành có sử dụng đối xứng trục. Bài 7. Hình bình hành. + Dạng 1. Nhận biết hình bình hành. + Dạng 2. Sử dụng tính chất của hình bình hành để chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau. + Dạng 3. Sử dụng tính chất đường chéo hình bình hành để chứng minh ba điểm thẳng hàng, chứng minh ba đường thẳng đồng quy. + Dạng 4. Dựng hình bình hành, hoặc dựng hình có liên quan đến hình bình hành. Bài 8. Đối xứng tâm. + Dạng 1. Vẽ hình đối xứng qua một tâm. + Dạng 2. Nhận biết hai điểm đối xứng với nhau qua một tâm. Sử dụng đối xứng tâm để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. + Dạng 3. Tìm tâm đối xứng của một hình, tìm hình có tâm đối xứng. + Dạng 4. Dựng hình có sử dụng đối xứng tâm. Bài 9. Hình chữ nhật. + Dạng 1. Nhận biết hình chữ nhật. + Dạng 2. Sử dụng tính chất hình chữ nhật để chứng minh các quan hệ bằng nhau, song song, thẳng hàng, vuông góc. + Dạng 3. Tính chất đối xứng của hình chữ nhật. + Dạng 4. Áp dụng vào tam giác. + Dạng 5. Dựng hình chữ nhật. Bài 10. Đường thẳng song song với một đường thẳng cho trước. + Dạng 1. Đường thẳng song song cách đều. + Dạng 2. Chứng tỏ một điểm chuyển động trên một đường thẳng song song với một đường thẳng cho trước. + Dạng 3. Phát biểu một tập hợp điểm. Bài 11. Hình thoi. + Dạng 1. Nhận biết hình thoi. + Dạng 2. Sử dụng tính chất hình thoi để tính toán, chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau, các đường thẳng vuông góc. + Dạng 3. Tính chất đối xứng của hình thoi. + Dạng 4. Dựng hình thoi. Bài 12. Hình vuông. + Dạng 1. Nhận biết hình vuông. + Dạng 2. Sử dụng tính chất hình vuông để chứng minh các quan hệ bằng nhau, song song, thẳng hàng, vuông góc. + Dạng 3. Tìm điều kiện để một hình trở thành hình vuông. + Dạng 4. Dựng hình vuông, cắt hình vuông. Ôn tập chương I.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề diện tích hình thoi
Nội dung Chuyên đề diện tích hình thoi Bản PDF - Nội dung bài viết Một bộ tài liệu chuyên về diện tích hình thoi Một bộ tài liệu chuyên về diện tích hình thoi Tài liệu này bao gồm 14 trang chứa thông tin chi tiết về diện tích hình thoi, được chia thành ba phần chính. Phần I: Kiến thức cơ bản Trong phần này, bạn sẽ được học về cách tính diện tích của tứ giác có hai đường chéo vuông góc và diện tích hình thoi. Đặc biệt, bạn sẽ biết rằng diện tích hình thoi có thể tính bằng nửa tích hai đường chéo hoặc bằng tích của một cạnh với chiều cao. Phần II: Một số dạng bài tập Trong phần này, bạn sẽ được hướng dẫn cách giải các dạng bài tập phổ biến như tính diện tích của tứ giác có hai đường chéo vuông góc và tính diện tích hình thoi. Bạn cũng sẽ tìm hiểu cách tìm diện tích lớn nhất hoặc nhỏ nhất của một hình. Phần III: Phiếu bài tự luyện Phần cuối cùng cung cấp cho bạn một phiếu bài tập tự luyện để thực hành và kiểm tra kiến thức của mình. Đáp án và lời giải chi tiết sẽ giúp bạn hiểu rõ hơn và nâng cao kỹ năng giải bài tập về diện tích hình thoi.
Chuyên đề diện tích hình thang
Nội dung Chuyên đề diện tích hình thang Bản PDF - Nội dung bài viết Chuyên đề diện tích hình thang Chuyên đề diện tích hình thang Chuyên đề diện tích hình thang là tài liệu học tập bao gồm 08 trang, được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. Tài liệu này tóm tắt lý thuyết về trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán liên quan đến diện tích hình thang. Đầu tiên, tài liệu giải thích rằng diện tích hình thang bằng nửa tích của tổng hai đáy với chiều cao, cũng như diện tích hình bình hành bằng tích của một cạnh với chiều cao ứng với cạnh đó. Trong phần bài tập và các dạng toán, tài liệu cung cấp các bài tập từ cơ bản đến nâng cao về diện tích hình thang. Các dạng bài minh họa bao gồm: tính diện tích hình thang, tính diện tích hình bình hành, tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích, tìm diện tích lớn nhất (nhỏ nhất) của một hình. Để giải các dạng toán này, học sinh sẽ được hướng dẫn cách sử dụng công thức tính diện tích, cũng như áp dụng các phương pháp giải quan trọng như sử dụng tính chất đường vuông góc ngắn hcm đường xiên. Ngoài ra, tài liệu còn cung cấp phiếu bài tự luyện để học sinh có thể tự rèn luyện và kiểm tra kiến thức của mình trong chuyên đề diện tích hình thang.
Chuyên đề diện tích tam giác
Nội dung Chuyên đề diện tích tam giác Bản PDF - Nội dung bài viết Chuyên đề diện tích tam giácTóm tắt lý thuyếtBài tập và các dạng toánPhiếu bài tự luyện Chuyên đề diện tích tam giác Tài liệu này bao gồm 11 trang, cung cấp kiến thức về diện tích tam giác cần đạt, phân loại và hướng dẫn giải các dạng bài tập liên quan đến chuyên đề này. Nội dung tài liệu được tóm tắt từ lý thuyết về trọng tâm tam giác, cách tính diện tích tam giác bằng nửa tích của một cạnh với chiều cao tương ứng. Tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao, đồng thời cung cấp đáp án và lời giải chi tiết để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. Tóm tắt lý thuyết Diện tích tam giác có thể tính bằng nửa tích của một cạnh nhân với chiều cao tương ứng. Tài liệu cũng chú ý đến tỉ số diện tích của hai tam giác khi có một cạnh hoặc một đường cao bằng nhau. Bài tập và các dạng toán Tài liệu cung cấp các dạng bài tập minh họa như: Tính toán, chứng minh về diện tích tam giác; Sử dụng công thức tính diện tích để tìm độ dài đoạn thẳng; Chứng minh hệ thức về diện tích; Tìm vị trí điểm thỏa mãn đẳng thức về diện tích; Tìm diện tích lớn nhất hoặc nhỏ nhất của một hình. Phương pháp giải các dạng toán được hướng dẫn chi tiết, từ việc sử dụng công thức tính diện tích đến phát hiện mối quan hệ giữa các yếu tố trong tam giác. Điều này giúp học sinh nắm vững kiến thức và áp dụng linh hoạt trong giải các bài tập. Phiếu bài tự luyện Tài liệu cuối cùng cung cấp phiếu bài tập tự luyện để học sinh có thể kiểm tra kiến thức và rèn luyện kỹ năng giải bài tập liên quan đến diện tích tam giác. Đây là cơ hội cho học sinh tự kiểm tra và nâng cao khả năng giải bài toán trong chuyên đề này.
Chuyên đề diện tích hình chữ nhật
Nội dung Chuyên đề diện tích hình chữ nhật Bản PDF - Nội dung bài viết Chuyên đề diện tích hình chữ nhật Chuyên đề diện tích hình chữ nhật Tài liệu này bao gồm 11 trang, cung cấp tóm tắt lý thuyết về trọng tâm, phân dạng và hướng dẫn giải các dạng toán liên quan đến diện tích hình chữ nhật. Nội dung tài liệu được tuyển chọn từ cơ bản đến nâng cao, giúp học sinh hiểu rõ về chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. Tóm tắt lý thuyết: 1. Khái niệm diện tích đa giác: Diện tích đa giác là số đo phần mặt phẳng giới hạn bởi một đa giác. Diện tích đa giác có các tính chất: hai tam giác bằng nhau có diện tích bằng nhau, chia đa giác thành các đa giác không có điểm chung thì diện tích bằng tổng diện tích các đa giác đó, và đơn vị diện tích của hình vuông tương ứng với đơn vị đo được chọn. 2. Công thức tính diện tích hình cơ bản: - Diện tích hình chữ nhật: bằng tích hai kích thước của nó. - Diện tích hình vuông: bằng bình phương cạnh. - Diện tích tam giác vuông: bằng nửa tích hai cạnh góc vuông. - Diện tích tam giác thường: bằng nửa tích một cạnh và chiều cao hạ xuống cạnh đó. II. Bài tập và các dạng toán: A. Các dạng bài minh họa: - Tính diện tích đa giác. - Diện tích hình chữ nhật. - Diện tích hình vuông. - Diện tích tam giác vuông. - Tổng hợp các dạng trên. B. Phiếu bài tự luyện: - Diện tích hình chữ nhật. - Tính độ dài các cạnh của hình chữ nhật. - Diện tích hình vuông và tam giác vuông. - Bài tập tổng hợp. Tài liệu này cung cấp đầy đủ đáp án và lời giải chi tiết, giúp học sinh hỗ trợ trong quá trình học tập, hiểu rõ về diện tích hình chữ nhật và áp dụng vào các dạng bài tập phong phú.