Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển HSG Toán 12 năm 2021 - 2022 sở GDĐT Bà Rịa - Vũng Tàu

Đề chọn đội tuyển HSG Toán 12 năm 2021 – 2022 sở GD&ĐT Bà Rịa – Vũng Tàu gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 24 tháng 11 năm 2021. Trích dẫn đề chọn đội tuyển HSG Toán 12 năm 2021 – 2022 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn tâm O và có các đường cao AD, BE, CF cắt nhau tại H. Gọi O1 là điểm đối xứng của O qua đường thẳng BC. AO1 cắt BC tại L, DE cắt HC tại M, DF cắt HB tại N. a) Chứng minh đường tròn ngoại tiếp tam giác DMN và đường tròn đường kính AL tiếp xúc nhau. b) Tiếp tuyến tại D của đường tròn đường kính AL cắt EF tại K. Chứng minh KH = KD. + Cho các số nguyên dương a, b, c phân biệt. Chứng minh tồn tại số nguyên n sao cho a + n, b + n, c + n là các số đôi một nguyên tố cùng nhau. + Trên mặt phẳng ta vẽ 3333 đường tròn đôi một khác nhau và có bán kính bằng nhau. Chứng minh rằng luôn chọn ra được trong số đó 34 đường tròn mà các đường tròn này đôi một có điểm chung hoặc đôi một không có điểm chung.

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GDĐT Yên Bái
giới thiệu đến quý thầy, cô giáo và các em học sinh đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Yên Bái; kỳ thi được diễn ra trong hai ngày 29 và 30 tháng 09 năm 2021. Trích dẫn đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Yên Bái : + Cho tam giác ABC (ABC < ACB) vuông tại A và nội tiếp đường tròn (w). Tiếp tuyến tại A của (w) cắt đường thẳng BC tại D, E là điểm đối xứng của A qua đường thẳng BC, X là hình chiếu vuông góc của A lên BE, Y là trung điểm của AX, đường thẳng BY cắt đường tròn (w) tại điểm thứ hai là Z. Chứng minh BD là tiếp tuyến của đường tròn ngoại tiếp tam giác ADZ. + Một lớp học có 17 học sinh nam và 20 học sinh nữ. Hỏi có tất cả bao nhiêu cách xếp 37 học sinh đó thành một hàng dọc sao cho xuất hiện đúng một cặp nam – nữ mà học sinh nam đứng trước học sinh nữ? + Một dãy phòng có 19 phòng. Ban đầu mỗi phòng có một người. Sau đó cứ mỗi ngày có hai người nào đó được chuyển sang hai phòng bên cạnh nhưng theo hai chiều ngược nhau. Hỏi sau một số ngày có hay không trường hợp mà a) Không có ai ở phòng thứ tự chẵn. b) Có 10 người ở phòng cuối.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GDĐT Sơn La
giới thiệu đến quý thầy, cô giáo và các em học sinh đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Sơn La; kỳ thi được diễn ra trong hai ngày 18 và 19 tháng 09 năm 2021. Trích dẫn đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Sơn La : + Cho tam giác nhọn ABC không cân nội tiếp đường tròn (O), có đường cao AH và tâm đường tròn nội tiếp là I. Đường thẳng AI cắt đường tròn (O) tại điểm thứ hai M. Gọi M là điểm đối xứng với A qua tâm O. Đường thẳng MA’ cắt các đường thẳng AH, BC theo thứ tự tại N và K. a) Chứng minh tứ giác NHIK nội tiếp đường tròn. b) Đường thẳng A’I cắt lại đường tròn (O) tại điểm thứ hai D, hai đường thẳng AD và BC cắt nhau tại điểm S. Chứng minh rằng nếu AB + AC = 2BC thì I là trọng tâm của tam giác AKS. + Chứng minh rằng nếu số tự nhiên m có dạng 4k + 1 với k > 0 mà biểu diễn được không ít hơn hai cách dưới dạng tổng hai số chính phương thì m là hợp số. + Với số nguyên dương N cho trước, trên bảng có viết tất cả các ước nguyên dương của N. Hai bạn An và Bình chơi một trò chơi với luật như sau: An đi đầu tiên và xóa số N, ở mỗi lượt tiếp theo, các bạn sẽ xóa số là ước hoặc bội của số mà người kia xóa ở lượt trước đó. Ai đến lượt đi của mình mà không thực hiện được nữa thì thua. a) Với N = 2022, chứng minh rằng Bình có cách chơi để thắng. b) Tìm số N nhỏ nhất và N > 2022 sao cho An có cách chơi thắng.
Đề chọn học sinh giỏi Toán 12 chuyên năm 2021 - 2022 sở GDĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 chương trình THPT chuyên năm học 2021 – 2022 sở GD&ĐT Vĩnh Phúc.
Đề chọn đội tuyển tỉnh môn Toán năm 2021 - 2022 trường chuyên Lê Quý Đôn - Khánh Hòa
Đề chọn đội tuyển tỉnh môn Toán năm 2021 – 2022 trường chuyên Lê Quý Đôn – Khánh Hòa gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 180 phút; kỳ thi được diễn ra vào ngày 05 tháng 10 năm 2021.