Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề góc với đường tròn

Tài liệu gồm 30 trang, hướng dẫn giải các dạng toán chuyên đề góc với đường tròn: góc ở tâm, góc nội tiếp, góc tạo bởi tiếp tuyến và dây cung góc có đỉnh bên trong, bên ngoài đường tròn, giúp học sinh học tốt chương trình Hình học 9 chương 3. CHỦ ĐỀ 1 . GÓC Ở TÂM. Để tính số đo của góc ở tâm, số đo của cung bị chắn, ta sử dụng các kiến thức sau. + Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó. + Số đo của cung lớn bằng hiệu giữa 360 độ và số đo của cung nhỏ (có chung hai đầu mút với cung lớn). + Số đo của nửa đường tròn bằng 180 độ. Cung cả đường tròn có số đo 360 độ. + Sử dụng tỉ số lượng giác của một góc nhọn để tính góc. + Sử dụng quan hệ đường kính và dây cung. CHỦ ĐỀ 2 . GÓC NỘI TIẾP – GÓC TẠO BỞI TIẾP TUYẾN VÀ DÂY CUNG. + Điểm nằm chính giữa cung chia cung đó thành hai cung có số đo bằng nhau. Hai góc nội tiếp chắn hai cung đó thì bằng nhau. + Để chứng minh đẳng thức hình học, suy nghĩ quy về chứng minh tam giác đồng dạng dựa vào các góc nội tiếp cùng chắn một cung hoặc hai cung bằng nhau trong một đường tròn. + Góc nội tiếp chắn nửa đường tròn là góc vuông. + Góc nội tiếp (nhỏ hơn bằng 90 độ) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung. CHỦ ĐỀ 3 . GÓC CÓ ĐỈNH BÊN TRONG VÀ BÊN NGOÀI ĐƯỜNG TRÒN. + Gặp bài toán tiên quan đến những góc có đỉnh ở bên trong hay bên ngoài đường tròn ta thường tính số đo của chúng theo số đo các cung bị chắn rồi biến đổi tổng hoặc hiệu của hai cung thành một cung. + Số đo của góc nội tiếp bằng nửa số đo của góc ở tâm cùng chắn một cung. + Số đo của góc nội tiếp bằng nửa số đo của cung bị chắn. CHỦ ĐỀ 4 . MỘT SỐ BÀI TẬP GÓC VỚI ĐƯỜNG TRÒN. + Dạng 1. Góc nội tiếp – góc tạo bởi tia tiếp tuyến và dây cung. + Dạng 2. Góc có đỉnh ở bên trong và bên ngoài đường tròn.

Nguồn: toanmath.com

Đọc Sách

Tài liệu Toán 9 chủ đề một số hệ thức về cạnh và góc trong tam giác vuông
Tài liệu gồm 21 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề một số hệ thức về cạnh và góc trong tam giác vuông trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. B. Bài tập và các dạng toán. Dạng 1 : Giải tam giác vuông. Cách giải: Để giải tam giác vuông ta dùng hệ thức giữa cạnh và các góc trong tam giác vuông. – Chú ý: Các bài toán về giải tam giác vuông bao gồm: + Giải tam giác vuông khi biết độ dài 1 cạnh và số đo 1 góc nhọn. + Giải tam giác vuông khi biết độ dài 2 cạnh. Dạng 2 : Tính cạnh và góc của tam giác. Cách giải: Làm xuất hiện tam giác vuông để áp dụng các hệ thức trên bằng cách kẻ thêm đường cao. Dạng 3 : Toán ứng dụng thực tế. Cách giải: Dùng hệ thức giữa cạnh và góc trong tam giác vuông để giải quyết tình huống trong thực tế. Dạng 4 : Toán tổng hợp. Cách giải: Vận dụng linh hoạt một số hệ thức giữa cạnh và góc trong một tam giác vuông để giải toán. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề tỉ số lượng giác của góc nhọn
Tài liệu gồm 15 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề tỉ số lượng giác của góc nhọn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định nghĩa. 2. Tỉ số lượng giác của hai góc phụ nhau. 3. Một số hệ thức liên hệ giữa các tỉ số lượng giác. 4. Bảng tỷ số lượng giác của một số góc đặc biệt. B. Bài tập và các dạng toán. Dạng toán: Tính tỉ số lượng giác của góc nhọn, tính cạnh, tính góc. Cách giải: Sử dụng các kiến thức trong phần tóm tắt lý thuyết. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai
Tài liệu gồm 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Đưa thừa số ra ngoài dấu căn. 2. Đưa thừa số vào trong dấu căn. 3. Khử mẫu của biểu thức lấy căn. 4. Trục căn thức ở mẫu. B. Bài tập và các dạng toán. Dạng 1: Đưa thừa số ra ngoài dấu căn hoặc vào trong dấu căn. Dạng 2: So sánh các căn bậc hai. Dạng 3: Rút gọn biểu thức chứa căn bậc hai. Dạng 4: Khử mẫu của biểu thức dưới dấu căn bậc hai. Dạng 5: Trục căn thức ở mẫu. Dạng 6: Sử dụng các phép biến đổi căn thức bậc hai để giải phương trình. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề căn bậc ba
Tài liệu gồm 20 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn bậc ba trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. I. Căn bậc ba. II. Căn bậc n. B. Bài tập và các dạng toán. Dạng 1: Thực hiện phép tính có chứa căn bậc ba. Dạng 2: Khử mẫu thức chứa căn bậc ba. Dạng 3: So sánh các căn bậc ba. Dạng 4: Giải phương trình chứa căn bậc ba. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.