Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán tích phân thường gặp trong kỳ thi THPTQG

Tài liệu tích phân và các phương pháp tìm tích phân gồm 109 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển tập các câu hỏi và bài toán trắc nghiệm chủ đề tích phân cùng các vấn đề liên quan, có đáp án và lời giải chi tiết, các câu hỏi và bài toán được tác giả trích dẫn từ các đề thi THPT Quốc gia môn Toán những năm gần đây. Khái quát nội dung tài liệu các dạng toán tích phân thường gặp trong kỳ thi THPTQG: Phần A . CÂU HỎI Dạng 1. Tích phân cơ bản (Trang 2). + Dạng 1.1 Áp dụng TÍNH CHẤT để giải (Trang 2). + Dạng 1.2 Áp dụng bảng công thức cơ bản (Trang 4). Dạng 2. Tích phân HÀM HỮU TỶ (Trang 7). Dạng 3. Giải tích phân bằng phương pháp VI PHÂN (Trang 10). Dạng 4. Giải tích phân bằng phương pháp ĐỔI BIẾN SỐ (Trang 11). + Dạng 4.1 Hàm số tường minh (Trang 11). + Dạng 4.1.1 Hàm số chứa căn thức (Trang 11). + Dạng 4.1.2 Hàm số chứa hàm lượng giác (Trang 14). + Dạng 4.13. Hàm số chứa hàm số mũ, logarit (Trang 16). + Dạng 4.1.4 Hàm số hữu tỷ, đa thức (Trang 17). + Dạng 4.2 Hàm số không tường minh (hàm ẩn) (Trang 18). Dạng 5. Tích phân TỪNG PHẦN (Trang 22). + Dạng 5.1 Hàm số tường minh (Trang 22). + Dạng 5.2 Hàm số không tường minh (hàm ẩn) (Trang 25). Dạng 6. Kết hợp nhiều phương pháp để giải toán (Trang 29). Dạng 7. Tích phân của một số hàm số khác (Trang 31). + Dạng 7.1 Tích phân hàm số chứa dấu giá trị tuyệt đối (Trang 31). + Dạng 7.2 Tích phân nhiều công thức (Trang 32). + Dạng 7.3 Tích phân hàm số chẵn, lẻ (Trang 33). Dạng 8. Một số bài toán tích phân khác (Trang 34). [ads] Phần B . LỜI GIẢI THAM KHẢO Dạng 1. Tích phân cơ bản (Trang 38). + Dạng 1.1 Áp dụng TÍNH CHẤT để giải (Trang 38). + Dạng 1.2 Áp dụng bảng công thức cơ bản (Trang 40). Dạng 2. Tích phân HÀM HỮU TỶ (Trang 43). Dạng 3. Giải tích phân bằng phương pháp VI PHÂN (Trang 46). Dạng 4. Giải tích phân bằng phương pháp ĐỔI BIẾN SỐ (Trang 48). + Dạng 4.1. Hàm số tường minh (Trang 48). + Dạng 4.1.1. Hàm số chứa căn thức (Trang 48). + Dạng 4.1.2. Hàm số chứa hàm lượng giác (Trang 54). + Dạng 4.1.3. Hàm số chứa hàm số mũ, logarit (Trang 57). + Dạng 4.1.4. Hàm số hữu tỷ, đa thức (Trang 59). + Dạng 4.2. Hàm số không tường minh (hàm ẩn) (Trang 60). Dạng 5. Tích phân TỪNG PHẦN (Trang 68). + Dạng 5.1 Hàm số tường minh (Trang 68). + Dạng 5.2 Hàm số không tường minh (hàm ẩn) (Trang 74). Dạng 6. Kết hợp nhiều phương pháp để giải toán (Trang 88). Dạng 7. Tích phân của một số hàm số khác (Trang 91). + Dạng 7.1 Tích phân hàm số chứa dấu giá trị tuyệt đối (Trang 91). + Dạng 7.2. Tích phân nhiều công thức (Trang 95). + Dạng 7.3 Tích phân hàm số chẵn, lẻ (Trang 95). Dạng 8. Một số bài toán tích phân khác (Trang 100).

Nguồn: toanmath.com

Đọc Sách

Phân loại dạng và phương pháp giải nhanh nguyên hàm - tích phân - Nguyễn Vũ Minh (Tập 1)
Tài liệu gồm 75 trang bao gồm lý thuyết, công thức nguyên hàm, phân dạng và bài tập nguyên hàm – tích phân có đáp án, tài liệu do thầy Nguyễn Vũ Minh biên soạn. Trích dẫn tài liệu : + F(x) và G(x) là các nguyên hàm của hàm số f(x) trên khoảng (a,b). Khi đó: (I) F(x) = G(x) + C (II) G(x) = F(x) + C Với C là một hằng số nào đó. Khẳng định nào sau đây là đúng? A. (I) đúng, (II) sai B. (I) sai, (II) đúng C. Cả (I) và (II) đều đúng D. Cả (I) và (II) đều sai [ads] + Nguyên hàm của hàm số: y = cos2x/[(sinx)^2.(cosx)^2]^2 là? A. tanx – cotx + C B. -tanx – cotx + C C. tanx + cotx + C D. cotx – tanx + C + Cho hàm số f(x) = sinx + cos2x. Tìm nguyên hàm F(x) của hàm số f(x) biết F(π/2) = π/2
Giải toán 12 nguyên hàm - tích phân - Trần Đức Huyên
Cuốn sách Giải toán nguyên hàm – tích phân lớp 12 do tác giả Trần Đức Huyên chủ biên gồm 196 trang, bám sát theo cấu trúc của sách giáo khoa Giải tích 12 (Nâng cao) tổng hợp đầy đủ các vấn đề về nguyên hàm và tích phân thường gặp: Chương 1. Nguyên hàm Bài 1. Định nghĩa nguyên hàm và các tính chất của nguyên hàm + Vấn đề 1. Chứng minh F(x) là một nguyên hàm của f(x) + Vấn đề 2. Tìm họ nguyên hàm của hàm số + Vấn đề 3. Tìm một nguyên hàm của hàm số thỏa mãn điều kiện cho trước Bài 2. Một số phương pháp tìm nguyên hàm + Vấn đề 1. Tìm nguyên hàm bằng phương pháp đổi biến số + Vấn đề 2. Phương pháp nguyên hàm từng phần Chương 2. Tích phân Bài 1. Định nghĩa tích phân và tính chất của tích phân + Vấn đề 1. Tính tích phân bằng công thức Newton – Leibniz + Vấn đề 2. Tích phân có chứa dấu trị tuyệt đối + Vấn đề 3. Chứng minh bất đẳng thức tích phân [ads] Bài 2. Một số phương pháp tính tích phân + Vấn đề 1. Phương pháp đổi biến loại 1 + Vấn đề 2. Phương pháp đổi biến loại 2 (đổi biến dạng lượng giác) + Vấn đề 3. Phương pháp tích phân từng phần + Vấn đề 4. Một số dạng tích phân đặc biệt + Vấn đề 5. Một số dạng đổi biến đặc biệt + Vấn đề 6. Phương pháp tích phân truy hồi Chương 3. Ứng dụng tích phân để giải toán Bài 1. Ứng dụng tích phân để tính diện tích hình phẳng + Vấn đề 1. Tính diện tích hình phẳng giới hạn bởi 4 đường: (C): y = f(x), trục Ox, x = a và x = b (a < b) + Vấn đề 2. Tính diện tích hình phẳng giới hạn bởi các đường: (C): y = f(x), (D): y = g(x), x = a và x = b (a < b) + Vấn đề 3. Tính diện tích hình phẳng giới hạn bởi hai đường y = f(x) và y = g(x) + Vấn đề 4. Tính diện tích hình phẳng giới hạn bởi nhiều hơn hai đồ thị + Vấn đề 5. Tính diện tích hình phẳng giới hạn bởi các đường x = f(y), x = g(y), y = a và y = b (a < b) Bài 2. Ứng dụng tích phân để tính thể tích vật thể + Vấn đề 1. Tính thể tích của vật thể T + Vấn đề 2. Tính thể tích khối tròn xoay Xem thêm:  Tuyển chọn bài tập trắc nghiệm nguyên hàm có đáp án và lời giải chi tiết
Chuyên đề nguyên hàm luyện thi THPT Quốc gia 2018 - Lê Bá Bảo
Bài viết chuyên đề nguyên hàm được biên soạn bởi thầy Lê Bá Bảo gồm 43 trang nằm trong kế hoạch ôn tập luyện thi THPT Quốc gia 2018 môn Toán. Nội dung tài liệu: Nguyên hàm và các phương pháp xác định nguyên hàm I – Tổng quan lý thuyết 1. Nguyên hàm Cho hàm số f(x) xác định trên K (K là khoảng, đoạn hay nửa khoảng). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F'(x) = f(x) với mọi x ∈ K. Tính chất của nguyên hàm: + Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K. + Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số. 2. Tính chất của nguyên hàm 3. Sự tồn tại của nguyên hàm: Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K. 4. Bảng nguyên hàm của một số hàm số sơ cấp [ads] II – Phương pháp tính nguyên hàm 1. Phương pháp đổi biến số: Nếu ∫f(u)du = F(u) + C và u = u(x) là hàm số có đạo hàm liên tục thì: ∫f(u(x))u'(x)dx = F(u(x)) + C 2. Phương pháp nguyên hàm từng phần: Nếu hai hàm số u = u(x) và v = v(x) có đạo hàm liên tục trên K thì: ∫u(x)v'(x)dx = u(x)v(x) – ∫u'(x)v(x)dx III – Bài tập tự luận minh họa 1. Nhóm kỹ năng 1. Một số phép biến đổi cơ bản 2. Nhóm kỹ năng 2. Nguyên hàm các hàm số phân thức 3. Nhóm kỹ năng 3. Nguyên hàm từng phần + Dạng 1. I = ∫f(x)sinxdx hoặc I = ∫f(x)cosxdx, trong đó f(x) là đa thức. Phương pháp: Đặt u = f(x) và dv = sinxdx (hoặc cosxdx). + Dạng 2. I = ∫f(x)e^xdx, trong đó f(x) là đa thức. Phương pháp: Đặt u = f(x) và dv = e^x.dx. + Dạng 3. I = ∫f(x)logxdx, trong đó f(x) là đa thức. Phương pháp: Đặt u = logx và dv = f(x)dx 4. Nhóm kỹ năng 4. Đổi biến 5. Nhóm kỹ năng 5. Dùng vi phân IV – Bài tập trắc nghiệm minh họa: Tuyển chọn các bài toán trắc nghiệm nguyên hàm có đáp án và lời giải chi tiết. V – Bài tập trắc nghiệm tự luyện
Hướng dẫn giải một số bài toán nâng cao về ứng dụng của tích phân - Vũ Hồng Quý
Tài liệu gồm 10 trang tuyển tập 8 bài toán ứng dụng của tích phân ở mức độ vận dụng bậc cao kèm theo hướng dẫn giải.