Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp trường Toán 10 lần 2 năm 2022 - 2023 trường THPT Bình Sơn - Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 lần 2 năm học 2022 – 2023 trường THPT Bình Sơn, tỉnh Vĩnh Phúc; đề thi hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án. Trích dẫn Đề HSG cấp trường Toán 10 lần 2 năm 2022 – 2023 trường THPT Bình Sơn – Vĩnh Phúc : + Trong các mệnh đề sau đây, mệnh đề nào sai? A. Nếu 235 thì 169 chia hết cho 13 B. Nếu 45 là số nguyên tố thì 5 6 C. Nếu 42 chia hết cho 5 thì 42 chia hết cho 7 D. Nếu 5 2 1 là số nguyên tố thì 12 là ƯCLN của hai số 4 và 6. Cho các mệnh đề. A. Nếu ∆ABC đều có cạnh bằng a, đường cao là h thì 3 2 a h B. Tứ giác có bốn cạnh bằng nhau là hình vuông C. 15 là số nguyên tố D. 225 là một số nguyên. Hãy cho biết trong các mệnh đề sau mệnh đề nào đúng? + Một nhà khoa học đã nghiên cứu về tác động phối hợp của hai loại Vitamin A và B đã thu được kết quả như sau: Trong một ngày, mỗi người cần từ 400 đến 1000 đơn vị Vitamin cả A lẫn B và có thể tiếp nhận không quá 600 đơn vị vitamin Avà không quá 500 đơn vị vitamin B. Do tác động phối hợp của hai loại vitamin trên nên mỗi ngày một người sử dụng số đơn vị vitamin B không ít hơn một nửa số đơn vị vitamin A và không nhiều hơn ba lần số đơn vị vitamin A. Tính số đơn vị vitamin mỗi loại ở trên để một người dùng mỗi ngày sao cho chi phí rẻ nhất, biết rằng mỗi đơn vị vitamin A có giá 9 đồng và mỗi đơn vị vitamin B có giá 7,5 đồng. A. 600 đơn vị Vitamin A, 400 đơn vị Vitamin B. B. 600 đơn vị Vitamin A, 300 đơn vị Vitamin B. C. 500 đơn vị Vitamin A, 500 đơn vị Vitamin B. D. 100 đơn vị Vitamin A, 300 đơn vị Vitamin B. + Một cầu treo có dây truyền đỡ là Parabol ACB như hình vẽ. Đầu, cuối của dây được gắn vào các điểm A B trên mỗi trục AA và BB với độ cao 30 m. Chiều dài đoạn A B trên nền cầu bằng 200 m. Độ cao ngắn nhất của dây truyền trên cầu là CC = 5 m. Gọi QPHCIJK là các điểm chia đoạn A B thành các phần bằng nhau. Các thanh thẳng đứng nối nền cầu với đáy dây truyền QQ PP HH CC II JJ KK gọi là các dây cáp treo. Tính tổng độ dài của các dây cáp treo?

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG tỉnh Toán 10 THPT năm 2018 - 2019 sở GDĐT Hải Dương
Thứ Tư ngày 03 tháng 04 năm 2019, sở Giáo dục và Đào tạo tỉnh Hải Dương tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 10 khối THPT năm học 2018 – 2019, nhằm tuyển chọn ra những em học sinh lớp 10 giỏi môn Toán đang học tập tại các trường THPT tại Hải Dương để tuyên dương, khen thưởng và thành lập đội tuyển học sinh giỏi Toán 10 cấp tỉnh. Đề thi HSG tỉnh Toán 10 THPT năm 2018 – 2019 sở GD&ĐT Hải Dương được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài thi trong 180 phút, đề thi có lời giải chi tiết và thang chấm điểm. [ads] Trích dẫn đề thi HSG tỉnh Toán 10 THPT năm 2018 – 2019 sở GD&ĐT Hải Dương : + Một xưởng sản xuất hai loại sản phẩm loại I và loại II từ 200kg nguyên liệu và một máy chuyên dụng. Để sản xuất được một kilôgam sản phẩm loại I cần 2kg nguyên liệu và máy làm việc trong 3 giờ. Để sản xuất được một kilôgam sản phẩm loại II cần 4kg nguyên liệu và máy làm việc trong 1,5 giờ. Biết một kilôgam sản phẩm loại I lãi 300000 đồng, một kilôgam sản phẩm loại II lãi 400000 đồng và máy chuyên dụng làm việc không quá 120 giờ. Hỏi xưởng cần sản xuất bao nhiêu kilôgam sản phẩm mỗi loại để tiền lãi lớn nhất? + Cho tam giác nhọn ABC, gọi H, E, K lần lượt là chân đường cao kẻ từ các đỉnh A, B, C. Gọi diện tích các tam giác ABC và HEK lần lượt là S_ΔABC và S_ΔHEK . Biết rằng S_ΔABC = 4.S_ΔHEK, chứng minh (sinA)^2 + (sinB)^2 + (sinC)^2 = 9/4. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A. Đường thẳng AB có phương trình x + y – 3 = 0, đường thẳng AC có phương trình x – 7y + 5 = 0. Biết điểm M(1;1;0) thuộc cạnh BC, tìm tọa độ các đỉnh A, B, C.
Đề thi học sinh giỏi Toán 10 năm học 2018 - 2019 sở GDĐT Hà Tĩnh
Ngày 21 tháng 03 năm 2019, sở Giáo dục và Đào tạo Hà Tĩnh tổ chức kỳ thi chọn học sinh giỏi Toán lớp 10 năm học 2018 – 2019, đề thi được biên soạn theo hình thức tự luận với 05 bài toán, thời gian học sinh làm bài thi là 180 phút, kỳ thi nhằm tuyển chọn các em học sinh lớp 10 giỏi môn Toán đang học tập tại các trường THPT tại tỉnh Hà Tĩnh để thành lập đội tuyển học sinh giỏi Toán 10 cấp tỉnh, tham dự kỳ thi học sinh giỏi Toán 10 cấp Quốc gia. Trích dẫn đề thi học sinh giỏi Toán 10 năm học 2018 – 2019 sở GD&ĐT Hà Tĩnh : + Một người nông dân có một khu đất rất rộng dọc theo một con sông. Người đó muốn làm một cái hàng rào hình chữ E (như hình vẽ) để được một khu đất gồm hai phần đất hình chữ nhật để trồng rau và nuôi gà. Đối với mặt hàng rào song song với bờ sông thì chi phí nguyên vật liệu là 80 ngàn đồng một mét dài, đối với phần còn lại thì chi phí nguyên vật liệu là 40 ngàn đồng một mét dài. Tính diện tích lớn nhất của phần đất mà người nông dân rào được với chi phí vật liệu 20 triệu đồng. [ads] + Cho tam giác ABC có chu vi bằng 20, góc BAC bằng 60 độ, bán kính đường tròn nội tiếp tam giác bằng 3. Gọi A1, B1, C1 lần lượt là hình chiếu vuông góc của A, B, C lên BC, AC, AB và M là điểm nằm trong tam giác ABC sao cho góc ABM = BCM = CAM = φ. Tính cotφ và bán kính đường tròn ngoại tiếp tam giác A1B1C1. + Cho phương trình (x^2 + ax + 1)^2 + a(x^2 + ax + 1) + 1 = 0, với a là tham số. Biết rằng phương trình có nghiệm thực duy nhất. Chứng minh rằng a > 2.
Đề thi học sinh giỏi Toán 10 THPT năm 2018 - 2019 sở GDĐT Hà Nam
Vừa qua, sở Giáo dục và Đào tạo Hà Nam đã tổ chức kỳ thi chọn học sinh giỏi khối THPT năm học 2018 – 2019 môn Toán dành cho học sinh lớp 10, đề thi học sinh giỏi Toán 10 THPT năm 2018 – 2019 sở GD&ĐT Hà Nam được biên soạn theo hình thức tự luận với 05 bài toán, thời gian làm bài 180 phút. Trích dẫn đề thi học sinh giỏi Toán 10 THPT năm 2018 – 2019 sở GD&ĐT Hà Nam : + Trong mặt phẳng Oxy cho parabol (P): y = x^2 + mx + 3m – 2, đường thẳng (d): x – y + m = 0 (m là tham số thực) và hai điểm A(-1;-1), B(2;2). Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt M, N sao cho A, B, M, N là bốn đỉnh của hình bình hành. [ads] + Cho tứ giác lồi ABCD có AC vuông góc với BD và nội tiếp đường tròn tâm O bán kính R = 1. Đặt diện tích tứ giác ABCD bằng S và AB = a, BC = b, CD = c, DA = d. Tính giá trị biểu thức T = (ab + cd )(ad + bc)/S. + Trong mặt phẳng Oxy, cho tam giác ABC cân tại A(-1;3). Gọi D là điểm trên cạnh AB sao cho AB = 3AD và H là hình chiếu vuông góc của B trên CD. Điểm M(1/2;-3/2) là trung điểm đoạn HC. Xác định tọa độ đỉnh C, biết đỉnh B nằm trên đường thẳng có phương trình x + y + 7 = 0.
Đề thi Olympic Toán 10 năm 2018 - 2019 trường THPT Kim Liên - Hà Nội
giới thiệu đến thầy, cô và các em học sinh khối 10 nội dung đề thi Olympic Toán 10 năm 2018 – 2019 trường THPT Kim Liên – Hà Nội, đề thi gồm 01 trang với 05 bài toán tự luận, học sinh làm bài trong 150 phút (không tính khoảng thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi Olympic Toán 10 năm 2018 – 2019 trường THPT Kim Liên – Hà Nội : + Một cầu treo có dây truyền đỡ là Parabol ACB như hình vẽ. Đầu và cuối của dây được gắn vào các điểm A, B trên mỗi trục AA′ và BB′ với độ cao 30 m. Chiều dài đoạn A’B′ trên nền cầu bằng 200 m. Độ cao ngắn nhất của dây truyền trên cầu là CC’ = 5 m. Gọi Q′, P′, H′, C’, I′, J′, K′ là các điểm chia đoạn A’B′ thành các phần bằng nhau. Các thanh thẳng đứng nối nền cầu với đáy dây truyền: QQ′, PP′, HH′, CC’, II′, JJ′, KK′ gọi là các dây cáp treo. Tính tổng độ dài của các dây cáp treo? [ads] + Cho tam giác ABC và một điểm M bất kỳ, BC = a, CA = b, AB = c. a) Chứng minh rằng (b^2 – c^2)cosA = a(c.cosC – b.cosB). b) Tìm tập hợp các điểm M sao cho MB^2 + MC^2 = MA^2. + Trong mặt phẳng với hệ tọa độ Oxy, cho A(3;1), B(-1;2). a) Tìm tọa độ điểm N trên trục hoành Ox sao cho khoảng cách AN nhỏ nhất. b) Cho điểm M di động trên đường thẳng d: y = x. Đường thẳng MA cắt trục hoành tại P và đường thẳng MB cắt trục tung tại Q. Chứng minh đường thẳng PQ luôn đi qua một điểm cố định.