Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 – 2020 trường THPT Phú Lương – Thái Nguyên

Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 – 2020 trường THPT Phú Lương – Thái Nguyên Bản PDF Ngày … tháng 06 năm 2020, trường THPT Phú Lương, tỉnh Thái Nguyên tổ chức kỳ thi kiểm tra đánh giá chất lượng môn Toán lớp 12 giai đoạn cuối học kì 2 năm học 2019 – 2020, đánh dấu kết thúc một năm học với nhiều “biến động” do tình hình dịch bệnh. Đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT Phú Lương – Thái Nguyên mã đề 122 gồm có 04 trang, đề được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 32 câu, chiếm 08 điểm, phần tự luận gồm 04 câu, chiếm 02 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết các mã đề 122, 301, 125, 305. 1. TRẮC NGHIỆM + Định nghĩa nguyên hàm. + Phương pháp tính nguyên hàm. + Tính chất tích phân. + Tính chất tích phân. + Tích phân đổi biến số. + Phương pháp tính tích phân từng phần. + Tính diện tích hình phẳng, thể tích khối tròn xoay. + Tính tích phân hàm ẩn dựa vào định nghĩa, tính chất. + Tính tích phân hàm ẩn đổi biến hoặc từng phần. + Tìm môđun số phức hoặc điểm biểu diễn số phức. + Tìm số phức liên hợp. + Tìm tập hợp điểm biểu diễn số phức. + Tìm số phức nghịch đảo, phép chia hai số phức. + Tìm tập hợp điểm biểu diễn hình học của số phức. + Tìm điều kiện để hai số phức bằng nhau. + Giải phương trình bậc hai. + Tìm hình chiếu một điểm xuống các mặt phẳng tọa độ, hoặc các trục tọa độ, tìm tọa độ các phép toán vectơ, góc giữa hai vec tơ, độ dài đoạn thẳng, tích vô hướng, có hướng của hai vec tơ, điều kiện hai vec tơ vuông góc, cùng phương, ba điểm thẳng hàng. + Tìm tọa độ các phép toán vec tơ, góc giữa hai vec tơ, độ dài đoạn thẳng, tích vô hướng, có hướng của hai vec tơ, điều kiện hai vec tơ vuông góc, cùng phương, ba điểm thẳng hàng. [ads] + Tìm tâm và bán kính mặt cầu. + Viết phương trình mặt cầu. + Viết phương trình mặt phẳng (VTPT tìm được ngay), hoặc theo đoạn chắn. + Viết phương trình mặt phẳng đi qua ba điểm hoặc tìm VTPT qua tích có hướng. + Viết phương trình mặt phẳng dựa vào điều kiện cho trước (VTPT tìm thông qua các điều kiện song song vuông góc đường và mặt). + Viết phương trình mặt phẳng dựa vào điều kiện cho trước (VTPT tìm thông qua các điều kiện song song vuông góc đường và mặt). + Điểm thuộc đường thẳng. + Tìm một vec tơ chỉ phương của đương thẳng khi biết phương trình tham số. + Tìm một PTTS đường thẳng khi biết điểm và VTCP (phải kiểm tra hai điều kiện). + Viết phương trình đường thẳng dựa vào điều kiện cho trước (VTCP tìm dễ dàng). + Tìm tọa độ giao điểm hai đường thẳng, tìm điều kiện hai đường thẳng cắt nhau. + Chứng minh rằng hai đường thẳng chéo nhau. + Xét vị trí tương đối đường thẳng và mặt phẳng. + Viết phương trình đường thẳng. 2. TỰ LUẬN + Tính tích phân (đổi biến, hoặc từng phần). + Tìm số phức thỏa mãn điều kiện cho trước. + Viết phương trình đường thẳng hoặc mặt phẳng. + Tìm GTLN và GTNN của môđun số phức. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT chuyên Hạ Long Quảng Ninh
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT chuyên Hạ Long Quảng Ninh Bản PDF Ngày … tháng 06 năm 2020, trường THPT chuyên Hạ Long, thành phố Hạ Long, tỉnh Quảng Ninh tổ chức kỳ thi kiểm tra học kỳ 2 môn Toán lớp 12 năm học 2019 – 2020. Đề thi học kỳ 2 Toán lớp 12 năm 2019 – 2020 trường THPT chuyên Hạ Long – Quảng Ninh mã đề 101 gồm có 06 trang, đề được biên soạn theo dạng đề trắc nghiệm với 45 câu phần kiến thức chung, 05 câu dành cho học sinh lớp không chuyên Toán, 05 câu dành cho học sinh lớp chuyên Toán, thời gian làm bài thi HK2 Toán lớp 12 là 90 phút. Trích dẫn đề thi học kỳ 2 Toán lớp 12 năm 2019 – 2020 trường THPT chuyên Hạ Long – Quảng Ninh : + Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC biết A(-5;7;-9), B(7;9;-5), C(-9;-7;5). Gọi điểm là H(a;b;c) trực tâm của tam giác ABC. Tính S = a^2 + b^2 + c^2. + Cho các số phức z thỏa mãn |z – (1 + i√3)^2019| = 2020. Biết rằng tập hợp các điểm biểu diễn các số phức w = (1 + i√3)(z + 2 – 5i) + (1 – i√3)^2020 là một đường tròn. Bán kính r của đường tròn đó là? [ads] + Cho số phức z thỏa mãn |z + 3 – 5i| = |z – 1 + 7i|. Gọi A, B lần lượt là biểu diễn hình học của các số phức z1 = -3 + 5i và z2 = 1 – 7i. Tập hợp các điểm biểu diễn z trong mặt phẳng phức là: A. Đường tròn đường kính AB. B. Đường thẳng AB. C. Đoạn thẳng AB. D. Đường trung trực của đoạn thẳng AB.
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT chuyên Thái Nguyên
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT chuyên Thái Nguyên Bản PDF Ngày … tháng 06 năm 2020, trường THPT chuyên Thái Nguyên, tỉnh Thái Nguyên tổ chức kỳ thi kiểm tra chất lượng lớp 12 môn Toán giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi học kỳ 2 Toán lớp 12 năm 2019 – 2020 trường THPT chuyên Thái Nguyên mã đề 103 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, nội dung đề bao quát toàn bộ chương trình Toán lớp 12. Trích dẫn đề thi học kỳ 2 Toán lớp 12 năm 2019 – 2020 trường THPT chuyên Thái Nguyên : + Một khối lập phương có cạnh 1 mét chứa đầy nước. Đặt vào trong khối đó một khối nón có đỉnh trùng với tâm một mặt của lập phương, đáy khối nón tiếp xúc với các cạnh của mặt đối diện. Tính tỉ số thể tích lượng nước trào ra ngoài và thể tích lượng nước ban đầu của khối lập phương. [ads] + Gọi m0 là giá trị thực nhỏ nhất của tham số m sao cho phương trình (m – 1)(log 1/3 (x – 3))^2 – (m – 5)log 1/3 (x – 3) + m – 1 = 0 có nghiệm thuộc (3;6). Khẳng định nào sau đây là đúng? + Gọi S là tập tất cả các giá trị nguyên của tham số thực m sao cho giá trị lớn nhất của hàm số y = |1/4.x^4 – 14.x^2 + 48x + m| trên đoạn [2;4] không vượt quá 30. Số phần tử của S là?
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Lê Quý Đôn Hà Nội
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Lê Quý Đôn Hà Nội Bản PDF Ngày … tháng 06 năm 2020, trường THPT Lê Quý Đôn, quận Đống Đa, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 12 giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi học kỳ 2 Toán lớp 12 năm 2019 – 2020 trường THPT Lê Quý Đôn – Hà Nội mã đề 896 gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 2 Toán lớp 12 năm 2019 – 2020 trường THPT Lê Quý Đôn – Hà Nội : + Trong mặt phẳng Oxy, cho hình bình hành ABCD với A, B, C lần lượt là các điểm biểu diễn các số phức 1 – 2i, 3 – i, 1 + 2i. Điểm D là điểm biểu diễn của số phức nào sau đây? [ads] + Trong không gian với hệ tọa độ Oxyz, cho điểm E(1;-2;4), F(1;-2;-3). Gọi M là điểm thuộc mặt phẳng Oxy sao cho tổng ME + MF có giá trị nhỏ nhất. Tìm tọa độ của điểm M? + Trong không gian cho đường thẳng d: (x + 1)/1 = (y + 2)/1 = (z – 1)/1 và mặt cầu x^2 + y^2 + z^2 – 2x – 4y + 6z – 13 = 0. Điểm M(a;b;c) thuộc d (a > 0) sao cho từ M kẻ được ba tiếp tuyến MA, MB, MC đến mặt cầu (A, B, C là các tiếp điểm thỏa mãn AMB = 60°, BMC = 90°, AMC = 120°. Tính giá trị T = a + b + c.
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Yên Phong 2 Bắc Ninh
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Yên Phong 2 Bắc Ninh Bản PDF Ngày … tháng 05 năm 2020, trường THPT Yên Phong 2, tỉnh Bắc Ninh tổ chức kỳ thi kiểm định chất lượng môn Toán lớp 12 giai đoạn học kỳ 2 năm học 2019 – 2020. Đề thi học kỳ 2 Toán lớp 12 năm 2019 – 2020 trường THPT Yên Phong 2 – Bắc Ninh mã đề 069 gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề bao quát kiến thức thi tốt nghiệp THPT 2020 môn Toán, đề thi có đáp án. Trích dẫn đề thi học kỳ 2 Toán lớp 12 năm 2019 – 2020 trường THPT Yên Phong 2 – Bắc Ninh : + Đường cong trong hình bên là đồ thị của một hàm số trong các hàm số ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào? [ads] + Cho hàm số y = f(x) liên tục trên [a;b]. Gọi D là miền hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành và các đường thẳng x = a, x = b (a < b). Diện tích của D được cho bởi công thức nào sau đây? + Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a, SO vuông góc với mặt phẳng (ABCD) và SO = a. Khoảng cách giữa SC và AB bằng? File WORD (dành cho quý thầy, cô):