Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 10 lần 2 năm 2018 - 2019 trường Thuận Thành 1 - Bắc Ninh

Nằm trong kế hoạch ôn tập kiểm tra Toán 10 định kỳ, vừa qua, trường THPT Thuận Thành 1 – Bắc Ninh đã tổ chức kỳ thi khảo sát chất lượng Toán 10 năm học 2018 – 2019 lần thứ 2, nội dung kiểm tra bao gồm kiến thức Toán 10 các em đã được học từ đầu năm học đến giữa học kỳ 2 năm học 2018 – 2019. Đề khảo sát Toán 10 lần 2 năm 2018 – 2019 trường Thuận Thành 1 – Bắc Ninh có mã đề 132 gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm 04 lựa chọn A, B, C, D, học sinh có 90 phút để làm bài thi, đề thi có đáp án. Trích dẫn đề khảo sát Toán 10 lần 2 năm 2018 – 2019 trường Thuận Thành 1 – Bắc Ninh : + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 gam hương liệu, 9 lít nước và 210 gam đường để pha chế nước ngọt loại I và nước ngọt loại II. Để pha chế 1 lít nước ngọt loại I cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Để pha chế 1 lít nước ngọt loại II cần 30 gam đường, 1 lít nước và 1 gam hương liệu. Mỗi lít nước ngọt loại I được 80 điểm thưởng, mỗi lít nước ngọt loại II được 60 điểm thưởng. Hỏi số điểm thưởng cao nhất có thể của mỗi đội trong cuộc thi là bao nhiêu? [ads] + Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t (h) có đồ thị là một phần của đường parabol có đỉnh I (2;9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau? + Một mảnh vườn hình chữ nhật có hai kích thước là 40m và 60m. Cần tạo ra một lối đi xung quanh mảnh vườn có chiều rộng như nhau sao cho diện tích còn lại là 1500m2 (hình vẽ bên). Hỏi chiều rộng của lối đi là bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề thi định kỳ Toán 10 năm học 2018 - 2019 trường THPT chuyên Bắc Ninh lần 1
Đề thi định kỳ Toán 10 năm học 2018 – 2019 trường THPT chuyên Bắc Ninh lần 1 được biên soạn theo hình thức tự luận, có phân ban, trong đó phần chung gồm 5 bài toán, phần riêng gồm 2 bài toán cho mỗi ban (Tự nhiên và Xã hội), thời gian làm bài 120 phút, đề thi có lời giải chi tiết. Nội dung các bài toán trong đề gồm: Phương trình và hệ phương trình, Mệnh đề và tập hợp, Biên luận phương trình bậc hai, Tương giao giữa đường thẳng và Parabol, Vectơ, Bài toán hình học phẳng liên quan đến đường tròn, Giả trị lớn nhất và giá trị nhỏ nhất. Qua đó có thể thấy đề thi nhằm mục đích kiểm tra lại các kiến thức Toán 9 và Toán 10 đã học. Trích dẫn đề thi định kỳ Toán 10 năm học 2018 – 2019 trường THPT chuyên Bắc Ninh lần 1 : + Cho phương trình: mx^2 – (4m – 2)x + 3m – 2 = 0 (1) (m là tham số). 1) Giải phương trình (1) khi m = 2. 2) Tìm giá trị nguyên của tham số m để phương trình (1) có các nghiệm đều là số nguyên. [ads] + Cho tam giác ABC có ba góc nhọn. Hai đường cao AE và BK của tam giác ABC (với E thuộc BC, K thuộc AC). 1) Chứng minh tứ giác ABEK nội tiếp được trong một đường tròn. 2) Chứng minh CE.CB = CK.CA. + Cho tập hợp A = (-∞;1] ∪ (3;6) và tập B được biểu diễn như hình vẽ. 1) Hãy viết tập B dưới dạng hợp của các khoảng, đoạn hoặc nửa khoảng. 2) Xác định các tập hợp sau dưới dạng hợp của các khoảng, đoạn hoặc nửa khoảng: C = A ∩ B và E = R\(A ∪B).
Đề kiểm tra kiến thức Toán 10 cuối năm 2017 - 2018 trường Yên Dũng 2 - Bắc Giang
Đề kiểm tra kiến thức Toán 10 cuối năm 2017 – 2018 trường Yên Dũng 2 – Bắc Giang mã đề 101 gồm 4 trang với 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong thời gian 90 phút, đề thi có đáp án . Trích dẫn đề kiểm tra kiến thức Toán 10 cuối năm 2017 – 2018 Yên Dũng 2 – Bắc Giang : + Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có đỉnh B, C lần lượt thuộc các đường thẳng a: 2x – y + 2 = 0, b: x – y – 5 = 0. Gọi H là hình chiếu của B lên AC. Biết C có tung độ dương và M(9/5; 2/5), K(9; 2) lần lượt là trung điểm của AH, CD. Tính diện tích S của ABCD? [ads] + Trên một đường tròn lượng giác (O; 1), gọi x là số đo của góc lượng giác (OA, OB) và y là số đo của góc lượng giác (OA, OC) với OA = OB = OC = 1, BC là đường kính. Mệnh đề nào sau đây luôn đúng(với k nguyên)? + Có bao nhiêu tiếp tuyến của đường tròn x^2 + y^2 – 2x + 2y = 0, biết tiếp tuyến tạo với các trục tọa độ một tam giác cân.
Đề kiểm tra chất lượng học bồi dưỡng Toán 10 trường THPT Lương Tài - Bắc Ninh
Đề kiểm tra chất lượng học bồi dưỡng Toán 10 năm học 2017 – 2018 trường THPT Lương Tài – Bắc Ninh mã đề 173 gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án . Trích dẫn đề kiểm tra chất lượng học bồi dưỡng Toán 10 : + Cho hàm số y = f(x) xác định trên tập D. Mệnh đề nào sau đây đúng? A. Nếu f(x) không là hàm số lẻ thì f(x) là hàm số chẵn. B. Nếu f(-x) = -f(x) ∀x ∈ D thì f(x) là hàm số lẻ. C. Đồ thị hàm số lẻ nhận trục tung làm trục đối xứng. D. Nếu f(x) là hàm số lẻ thì f(-x) = -f(x) ∀x ∈ D. [ads] + Từ một miếng tôn có hình dạng là nửa đường tròn bán kính 1 m, người ta cắt ra một hình chữ nhật. Hỏi có thể cắt được miếng tôn có diện tích lớn nhất là bao nhiêu? + Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng Δ: x – 2y – 5 = 0 và các điểm A(1;2), B(-2;3), C(-2;1). Viết phương trình đường thẳng d, biết đường thẳng d đi qua gốc tọa độ và cắt đường thẳng Δ tại điểm M sao cho: |vtMA + vtMB + vtMC| nhỏ nhất.
Kiểm tra tổng hợp Toán 10 năm 2017 - 2018 trường chuyên Hùng Vương - Bình Dương
Đề kiểm tra tổng hợp Toán 10 năm học 2017 – 2018 trường THPT chuyên Hùng Vương – Bình Dương gồm 25 câu hỏi trắc nghiệm khách quan, thời gian làm bài 45 phút, đề thi có đáp án . Trích dẫn đề kiểm tra tổng hợp Toán 10 năm 2017 – 2018 : + Các hành tinh và các sao chổi khi chuyển động xung quanh Mặt Trời có quỹ đạo là một đường Elip trong đó tâm Mặt Trời là một tiêu điểm. Điểm gần Mặt Trời nhất gọi là điểm cận nhật, điểm xa Mặt Trời nhất gọi là điểm viễn nhật. Trái Đất chuyển động xung quanh Mặt Trời theo quỹ đạo là một đường Elip có độ dài nửa trục lớn bằng 93.000.000 dặm. Tỉ số khoảng cách giữa điểm cận nhật và điểm viễn nhật đến Mặt Trời là 59/61. Tính khoảng cách từ Trái Đất đến Mặt Trời khi Trái Đất ở điểm cận nhật. Lấy giá trị gần đúng. [ads] + Ông Hoàng có một mảnh vườn hình Elip có chiều dài trục lớn và trục nhỏ lần lượt là 60m và 30m. Ông chia mảnh vườn ra làm hai nửa bằng một đường tròn tiếp xúc trong với Elip (tham khảo hình vẽ) để làm mục đích sử dụng khác nhau. Nửa bên trong đường tròn ông trồng cây lâu năm, nửa bên ngoài đường tròn ông trồng hoa màu. Tính tỉ số diện tích T giữa phần trồng cây lâu năm so với diện tích trồng hoa màu. Biết diện tích hình Elip được tính theo công thức S ab = π với a,b lần lượt là nửa độ dài trục lớn và nửa độ dài trục bé. Biết độ rộng của đường Elip là không đáng kể. + Với phép lượng giác hóa x = cost, t ∈ [0; π] thì phương trình đại số √(1 – x^2) = 4x^3 – 3x trở thành phương trình lượng giác nào sau đây?