Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn đội tuyển học sinh giỏi Toán 12 năm 2018 - 2019 sở GD và ĐT Bến Tre

Nhằm tuyển chọn các em học sinh lớp 12 giỏi môn Toán để bồi dưỡng tham dự kỳ thi HSG Quốc gia năm học 2018 – 2019, sở Giáo dục và Đào tạo Bến Tre tiến hành tổ chức kỳ thi học sinh giỏi cấp tỉnh, đề được soạn theo hình thức tự luận với 4 bài toán, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi chọn đội tuyển học sinh giỏi Toán 12 năm 2018 – 2019 sở GD và ĐT Bến Tre : + Dịp hè năm học 2017 – 2018, hiệu trưởng trường A tổ chức cho 3n (n là số nguyên dương) học sinh tham gia cắm trại. Mỗi ngày, hiệu trưởng phân công 3 học sinh làm vệ sinh khu vực cắm trại. Khi đợt cắm trại kết thúc, hiệu trưởng nhận thấy rằng: với 2 học sinh bất kỳ có đúng một lần được phân công làm vệ sinh trong cùng một ngày. Khi n= 3, hãy tìm số cách sắp xếp học sinh thỏa yêu cầu trên. Chứng minh rằng n là số lẻ. + Cho tam giác ABC có góc A bằng 60 độ, AB > AC. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC, H là giao điểm hai đường cao BE và CF (E ∈ AC, F ∈ AB). Trên các cạnh BH, HF lần lượt lấy các điểm M, N sao cho BM = CN. Tính giá trị của (MH + NH)/OH.

Nguồn: toanmath.com

Đọc Sách

Đề minh họa kỳ thi chọn HSG Toán 12 THPT cấp tỉnh năm học 2017 - 2018 sở GD và ĐT Phú Thọ
Đề minh họa kỳ thi chọn HSG (học sinh giỏi) Toán 12 THPT cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Phú Thọ gồm 6 trang với 40 câu hỏi trắc nghiệm (có đáp án) và 4 bài toán tự luận (có đáp số), thời gian làm bài 180 phút. Trích dẫn đề thi : + Một khối trụ được sơn hai mặt đáy và phần xung quanh, khối trụ có chiều cao bằng 8 và bán kính đáy bằng 6. Một mặt phẳng (P) cắt hai đáy theo các dây cung cách tâm tương ứng một khoảng là 3, đồng thời chia khối trụ thành hai phần có thể tích bằng nhau. Tính diện tích của phần mặt phẳng cắt không được sơn. A. 30√3 + 20π B. 12π + 6√3 C. 15√3 + 10π D. 60π [ads] + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, cho AB = a. Gọi I là trung điểm của AC. Biết hình chiếu của S lên mặt phẳng (ABC) là điểm H thỏa mãn vtBI = 3.vtIH và góc giữa hai mặt phẳng (SAB), (SBC) bằng 60 độ. Tính thể tích khối chóp S.ABC đã cho và tính khoảng cách giữa hai đường thẳng AB, SI theo a. + Đội dự tuyển thi học sinh giỏi Toán có 2 học sinh nữ, tham gia kỳ thi để chọn 4 học sinh vào đội tuyển chính thức. Biết xác suất trong đội tuyển chính thức có cả 2 học sinh nữ gấp 2 lần xác suất trong đội tuyển chính thức không có học sinh nữ nào, số học sinh của đội dự tuyển là: A. 9 B. 11 C. 5 D. 7