Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh vào 10 chuyên năm 2019 - 2020 sở GDĐT Hưng Yên

Nhằm tuyển chọn khóa học sinh lớp 10 vào các trường THPT chuyên tại tỉnh Hưng Yên để chuẩn bị cho năm học mới, vừa qua, sở Giáo dục và Đào tạo tỉnh Hưng Yên đã tổ chức kỳ thi Toán tuyển sinh vào lớp 10 THPT chuyên năm học 2019 – 2020. Đề Toán tuyển sinh vào 10 THPT chuyên năm học 2019 – 2020 sở GD&ĐT Hưng Yên được sử dụng cho các thí sinh dự thi vào các lớp chuyên Toán và chuyên Tin, đề gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). [ads] Trích dẫn đề Toán tuyển sinh vào 10 chuyên năm 2019 – 2020 sở GD&ĐT Hưng Yên : + Trong mặt phẳng toạ độ Oxy cho đường thẳng (d): y = -1/2020.x + 3/2020 và parabol y = 2x^2. Biết đường thẳng (d) cắt parabol (P) tại hai điểm B và C. Tìm tọa độ điểm A trên trục hoành để |AB – AC| lớn nhất. + Cho hình vuông ABCD tâm O, cạnh a. Lấy M là điểm bất kì trên cạnh AB (M khác A, M khác B). Qua A kẻ đường thẳng vuông góc với CM tại H, DH cắt AC tại K. 1) Chứng minh rằng MK song song với BD. 2) Gọi N là trung điểm của BC, trên tia đối của tia NO lấy điểm E sao cho ON/OE = √2/2, DE cắt OC tại F. Tính FO/FC. 3) Gọi P là giao điểm của MC và BD, Q là giao điểm của MD và AC. Tìm giá trị nhỏ nhất của diện tích tứ giác CPQD khi M thay đổi trên cạnh AB.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Bến Tre
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Bến Tre tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Bến Tre. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Bến Tre, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Bến Tre : + Sau Kỳ thi tuyển sinh vào lớp 10 năm học 2019 – 2020 sở GD&ĐT Bến Tre, học sinh hai lớp 9A và 9B tặng lại thư viện trường 738 quyển sách gồm hai loại sách giáo khoa và sách tham khảo. Trong đó, mỗi học sinh lớp 9A tặng 6 quyển sách giáo khoa và 3 quyển sách tham khảo; mỗi học sinh lớp 9B tặng 5 quyển sách giáo khoa và 4 quyển sách tham khảo. Biết số sách giáo khoa nhiều hơn số sách tham khảo là 166 quyển. Tính số học sinh của mỗi lớp. [ads] + Một bồn chứa xăng đặt trên xe gồm hai nửa hình cầu có đường kính là 2,2m và một hình trụ có chiều dài 3,5m. Tính thể tích của bồn chứa xăng (kết quả làm tròn đến chữ số thập phân thứ hai sau dấu phẩy). + Hai đường thẳng y = x − 1 và y = -2x + 8 cắt nhau tại điểm B và lần lượt cắt trục Ox tại điểm A, C. Xác định tọa độ các điểm A, B, C và tính diện tích tam giác ABC.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Bạc Liêu
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Bạc Liêu tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Bạc Liêu. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Bạc Liêu, kỳ thi được diễn ra vào ngày 07/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Bạc Liêu : + Cho hàm số y = 3x^2 có đồ thị (P) và đường thẳng (d): y = 2x + 1. Tìm tọa độ gia0 điểm của (P) và (d) bằng phép tính. + Trên nửa đường tròn đường kính AB, lấy hai điểm I, Q sao cho I thuộc cung AQ. Gọi C là giao điểm hai tia AI và BQ, H là giao điểm hai dây AQ và BI. a) Chứng minh tứ giác CIHQ nội tiếp. b) Chứng minh: CI.AI = HI.BI. c) Biết AB = 2R. Tính giá trị biểu thức: M = AI.AC + BQ.BC theo R. [ads] + Cho phương trình: x^2 – 2mx – 4m – 5 = 0 (m là tham số). a) Giải phương trình khi m = −2. b) Chứng minh phương trình luôn có nghiệm với mọi giá trị của m. c) Gọi x1, x2 là hai nghiệm của phương trình. Tìm m để: 1/2.x1^2 – (m – 1)x1 + x2 – 2m + 33/2 = 762019.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Bà Rịa - Vũng Tàu
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Bà Rịa – Vũng Tàu. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Bà Rịa – Vũng Tàu, kỳ thi được diễn ra vào ngày 13/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Bà Rịa – Vũng Tàu : + Có một vụ tai nạn ở vị trí B tại chân của một ngọn núi (chân núi có dạng đường tròn tâm O, bán kính 3 km) và một trạm cứu hộ ở vị trí A (tham khảo hình vẽ). Do chưa biết đường đi nào để đến vị trí tai nạn nhanh hơn nên đội cứu hộ quyết định điều hai xe cứu thương cùng xuất phát ở trạm đến vị trí tai nạn theo hai cách sau: Xe thứ nhất: đi theo đường thẳng từ A đến B, do đường xấu nên vận tốc trung bình của xe là 40 km/h. Xe thứ hai: đi theo đường thẳng từ A đến C với vận tốc trung bình 60 km/h, rồi đi từ C đến B theo đường cung nhỏ CB ở chân núi với vận tốc trung bình 30 km/h (3 điểm A, O, C thẳng hàng và C ở chân núi). Biết đoạn đường AC dài 27 km và góc ABO = 90 độ. a) Tính độ dài quãng đường xe thứ nhất đi từ A đến B. b) Nếu hai xe cứu thương xuất phát cùng một lúc tại A thì xe nào thì xe nào đến vị trí tai nạn trước? [ads] + Cho nửa đường tròn tâm O đường kính AB và E là điểm tùy ý trên nửa đường tròn đó (E khác A, B). Lấy điểm H thuộc đoạn EB (H khác E, B). Tia AH cắt nửa đường tròn tại điểm thứ hai là F. Kéo dài tia AE và tia BF cắt nhau tại I. ðường thẳng IH cắt nửa đường tròn tại P và cắt AB tại K. a) Chứng minh tứ giác IEHF nội tiếp được đường tròn. b) Chứng minh góc AIH = góc ABE. c) Chứng minh: cosABP = (PK + BK)/(PA + PB). d) Gọi S là giao điểm của tia BF và tiếp tuyến tại A của nửa đường tròn (O). Khi tứ giác AHIS nội tiếp được đường tròn, chứng minh EF vuông góc với EK.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Bình Phước
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Bình Phước tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Bình Phước. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Bình Phước, kỳ thi được diễn ra vào ngày 01/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Bình Phước : + Nông trường cao su Minh Hưng (xã Minh Hưng, huyện Bù Đăng, tỉnh Bình Phước) phải khai thác 260 tấn mũ trong một thời gian nhất ñịnh. Trên thực tế, mỗi ngày nông trường ñều khai thác vượt ñịnh mức 3 tấn. Do ñó, nông trường ñã khai thác ñược 261 tấn và song trước thời hạn 1 ngày. Hỏi theo kế hoạch mỗi ngày nông trường khai thác ñược bao nhiêu tấn mũ cao su. [ads] + Cho parabol (P): y = 1/2.x^2 và ñường thẳng (d): y = x + 2. a) Vẽ parabol (P) và ñường thẳng (d) trên cùng hệ trục tọa ñộ Oxy. b) Viết phương trình ñường thẳng (d1): y = ax + b song song với (d) và cắt (P) tại ñiểm A có hoành ñộ bằng −2 . + Không sử dụng máy tính, giải hệ phương trình 2x + y = 5  và x + 2y = 4.