Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bộ đề tham khảo cuối học kỳ 2 Toán 8 năm 2023 - 2024 phòng GDĐT TP Hải Dương

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 bộ đề tham khảo kiểm tra cuối học kỳ 2 môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Hải Dương, tỉnh Hải Dương; các đề thi được biên soạn theo hình thức 30% trắc nghiệm + 70% tự luận, thời gian làm bài 90 phút; đề thi có ma trận, bảng đặc tả, đáp án và hướng dẫn chấm điểm. 1. BIỂU THỨC ĐẠI SỐ. Phân thức đại số. Tính chất cơ bản của phân thức đại số. Các phép toán cộng, trừ, nhân, chia các phân thức đại số. * Nhận biết: Nhận biết được các khái niệm cơ bản về phân thức đại số: định nghĩa; điều kiện xác định; giá trị của phân thức đại số; hai phân thức bằng nhau. * Thông hiểu: Mô tả được những tính chất cơ bản của phân thức đại số. * Vận dụng: – Thực hiện được các phép tính: phép cộng, phép trừ, phép nhân, phép chia đối với hai phân thức đại số. – Vận dụng được các tính chất giao hoán, kết hợp, phân phối của phép nhân đối với phép cộng, quy tắc dấu ngoặc với phân thức đại số đơn giản trong tính toán. 2. HÀM SỐ VÀ ĐỒ THỊ. Hàm số và đồ thị. * Nhận biết: – Nhận biết được những mô hình thực tế dẫn đến khái niệm hàm số. – Nhận biết được đồ thị hàm số. * Thông hiểu: – Tính được giá trị của hàm số khi hàm số đó xác định bởi công thức. – Xác định được toạ độ của một điểm trên mặt phẳng toạ độ. – Xác định được một điểm trên mặt phẳng toạ độ khi biết toạ độ của nó. Hàm số bậc nhất y = ax + b (a ≠ 0) và đồ thị. Hệ số góc của đường thẳng y = ax + b (a ≠ 0). * Nhận biết: Nhận biết được khái niệm hệ số góc của đường thẳng y = ax + b (a ≠ 0). * Thông hiểu: – Thiết lập được bảng giá trị của hàm số bậc nhất y = ax + b (a ≠ 0). – Sử dụng được hệ số góc của đường thẳng để nhận biết và giải thích được sự cắt nhau hoặc song song của hai đường thẳng cho trước. * Vận dụng: – Vẽ được đồ thị của hàm số bậc nhất y = ax + b (a ≠ 0). – Vận dụng được hàm số bậc nhất và đồ thị vào giải quyết một số bài toán thực tiễn (đơn giản, quen thuộc) (ví dụ: bài toán về chuyển động đều trong Vật lí). * Vận dụng cao: Vận dụng được hàm số bậc nhất và đồ thị vào giải quyết một số bài toán (phức hợp, không quen thuộc) có nội dung thực tiễn. 3. PHƯƠNG TRÌNH. Phương trình bậc nhất. * Vận dụng: – Giải được phương trình bậc nhất một ẩn. – Giải quyết được một số vấn đề thực tiễn (đơn giản, quen thuộc) gắn với phương trình bậc nhất (ví dụ: các bài toán liên quan đến chuyển động trong Vật lí, các bài toán liên quan đến Hoá học). 4. CÁC HÌNH KHỐI TRONG THỰC TIỄN. Hình chóp tam giác đều, hình chóp tứ giác đều. * Nhận biết: Mô tả (đỉnh, mặt đáy, mặt bên, cạnh bên) được hình chóp tam giác đều và hình chóp tứ giác đều. * Thông hiểu: – Tạo lập được hình chóp tam giác đều và hình chóp tứ giác đều. – Tính được diện tích xung quanh, thể tích của một hình chóp tam giác đều và hình chóp tứ giác đều. – Giải quyết được một số vấn đề thực tiễn (đơn giản, quen thuộc) gắn với việc tính thể tích, diện tích xung quanh của hình chóp tam giác đều và hình chóp tứ giác đều (ví dụ: tính thể tích hoặc diện tích xung quanh của một số đồ vật quen thuộc có dạng hình chóp tam giác đều và hình chóp tứ giác đều). * Vận dụng: Giải quyết được một số vấn đề thực tiễn gắn với việc tính thể tích, diện tích xung quanh của hình chóp tam giác đều và hình chóp tứ giác đều. 5. ĐỊNH LÍ PYTHAGORE. Định lí pythagore. * Thông hiểu: Giải thích được định lí Pythagore. * Vận dụng: Tính được độ dài cạnh trong tam giác vuông bằng cách sử dụng định lí Pythagore. 6. HÌNH ĐỒNG DẠNG. Tam giác đồng dạng. * Thông hiểu: – Mô tả được định nghĩa của hai tam giác đồng dạng. – Giải thích được các trường hợp đồng dạng của hai tam giác, của hai tam giác vuông. * Vận dụng: Giải quyết được một số vấn đề thực tiễn (đơn giản, quen thuộc) gắn với việc vận dụng kiến thức về hai tam giác đồng dạng (ví dụ: tính độ dài đường cao hạ xuống cạnh huyền trong tam giác vuông bằng cách sử dụng mối quan hệ giữa đường cao đó với tích của hai hình chiếu của hai cạnh góc vuông lên cạnh huyền; đo gián tiếp chiều cao của vật; tính khoảng cách giữa hai vị trí trong đó có một vị trí không thể tới được). * Vận dụng cao: Giải quyết được một số vấn đề thực tiễn (phức hợp, không quen thuộc) gắn với việc vận dụng kiến thức về hai tam giác đồng dạng. Hình đồng dạng. Nhận biết: – Nhận biết được hình đồng dạng phối cảnh (hình vị tự), hình đồng dạng qua các hình ảnh cụ thể. – Nhận biết được vẻ đẹp trong tự nhiên, nghệ thuật, kiến trúc, công nghệ chế tạo … biểu hiện qua hình đồng dạng. 7. MỘT SỐ YẾU TỐ XÁC SUẤT. Mô tả xác suất của biến cố ngẫu nhiên trong một số ví dụ đơn giản. Mối liên hệ giữa xác suất thực nghiệm của một biến cố với xác suất của biến cố đó. * Nhận biết: Nhận biết được mối liên hệ giữa xác suất thực nghiệm của một biến cố với xác suất của biến cố đó thông qua một số ví dụ đơn giản. * Vận dụng: Sử dụng được tỉ số để mô tả xác suất của một biến cố ngẫu nhiên trong một số ví dụ đơn giản.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 2 Toán 8 năm 2020 - 2021 trường chuyên Hà Nội - Amsterdam
Ngày … tháng 04 năm 2021, trường THPT chuyên Hà Nội – Amsterdam tổ chức kiểm tra chất lượng môn Toán lớp 8 giai đoạn cuối học kì 2 năm học 2020 – 2021. Đề thi học kỳ 2 Toán 8 năm 2020 – 2021 trường chuyên Hà Nội – Amsterdam gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 2 Toán 8 năm 2020 – 2021 trường chuyên Hà Nội – Amsterdam : + Giải toán bằng cách lập phương trình: Hai ô tô cùng khởi hành từ A để đi đến B với vận tốc bằng nhau là 60km/h. Sau khi đi được một nửa quãng đường AB, ô tô thứ 2 tăng vận tốc thêm 15 km/h trên quãng đường còn lại. Tính quãng đường AB biết ô tô thứ hai đến B sớm hơn ô tô thứ nhất 30 phút. + Cho tam giác ABC vuông tại A (AB > AC). Kẻ đường cao AH (H BC). Gọi D là trung điểm của AB. Qua A kẻ đường thẳng vuông góc với CD cắt CD và CB lần lượt tại E và F. Gọi K là hình chiếu vuông góc của D trên BC. 1) Chứng minh rằng các tam giác ADE và CDA đồng dạng với nhau. 2) Chứng minh rằng BD.BC = BE.CD. 3) Chứng minh rằng HEF = BAH và EF là phân giác góc HEB. 4) Hệ Song bằng không phải làm: Chứng minh rằng? + Dành cho các lớp 8B, BC, 82, 8E và Hệ Song bằng: Với a, b, c là các số thực dương thỏa mãn a2 + b2 + c2 = 1, tìm giá trị lớn nhất của biểu thức P = 7a + 4b + 4c.
Đề thi học kì 2 Toán 8 năm 2020 - 2021 trường THCS Giảng Võ - Hà Nội
Thứ Hai ngày 26 tháng 04 năm 2021, trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng cuối học kì 2 môn Toán lớp 8 năm học 2020 – 2021. Đề thi học kì 2 Toán 8 năm 2020 – 2021 trường THCS Giảng Võ – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút.
Đề thi cuối kỳ 2 Toán 8 năm 2019 - 2020 trường THCS Nguyễn Thị Lựu - Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi cuối kỳ 2 Toán 8 năm học 2019 – 2020 trường THCS Nguyễn Thị Lựu, thành phố Cao Lãnh, tỉnh Đồng Tháp, đề thi có đáp án, hướng dẫn giải và thang chấm điểm. Trích dẫn đề thi cuối kỳ 2 Toán 8 năm 2019 – 2020 trường THCS Nguyễn Thị Lựu – Đồng Tháp : + Bạn Vy đi đến trường bằng xe đạp, lúc đi bạn ấy đi với vận tốc trung bình 12 km/h. Lúc về bạn ấy đi với vận tốc trung bình là 10 km/h nên thời gian về nhiều hơn thời gian đi là 3 phút. Tính quãng đường từ nhà đến trường của bạn Vy? + Cho tam giác ABC vuông tại A, có AB = 9cm, AC = 12cm, BC = 15cm, đường cao AH (H thuộc BC). 1/ Chứng minh HAC đồng dạng ABC. 2/ Chứng minh rằng 2 AC HC BC. 3/ Cho AD là đường phân giác của góc BAC (D thuộc BC). Tính độ dài BD và DC (làm tròn đến chữ số thập phân thứ nhất). + 1/ Viết công thức tính thể tích hình hộp chữ nhật biết 3 kích thước của hình hộp chữ nhật là a, b, c (cùng đơn vị đo). 2/ Một hồ nước có dạng hình hộp chữ nhật, có chiều dài là 8 m, chiều rộng là 4 m, chiều cao là 1,5 m. Hỏi phải bơm bao nhiêu m3 nước thì hồ đầy nước.
Đề thi học kỳ 2 Toán 8 năm học 2019 2020 sở GDĐT Quảng Nam
Nhằm đánh giá tổng kết chất lượng dạy và học môn Toán lớp 8 của giáo viên và học sinh tại các trường THCS tại tỉnh Quảng Nam, ngày … tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kỳ thi kiểm tra học kỳ 2 Toán 8 năm học 2019 – 2020. Đề thi học kỳ 2 Toán 8 năm học 2019 – 2020 sở GD&ĐT Quảng Nam gồm có hai mã đề: mã đề A và mã đề B; đề gồm có 02 trang với 15 câu trắc nghiệm và 03 câu tự luận, phần trắc nghiệm chiếm 05 điểm, phần tự luận chiếm 05 điểm, thời gian làm bài 60 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kỳ 2 Toán 8 năm học 2019 – 2020 sở GD&ĐT Quảng Nam : + Cho tam giác ABC vuông tại A, đường cao AH. a. Chứng minh ∆ABC đồng dạng với ∆HBA, từ đó suy ra AB^2 = BH.BC. b. Tia phân giác của góc ABC cắt AH tại I. Chứng minh rằng IA/AC = IH/HA. c. Tia phân giác của góc HAC cắt BC tại K. Chứng minh IK song song với AC. [ads] + Trong các phương trình sau, phương trình nào là phương trình bậc nhất một ẩn? + Biết ABCD.A’B’C’D’ là hình hộp chữ nhật có AB = 3cm, BC = 5cm, AA’ = 4cm. Đường thẳng AB song song với đường thẳng?