Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2019 2020 sở GD ĐT Bình Phước

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2019 2020 sở GD ĐT Bình Phước Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi HK1 Toán lớp 11 năm học 2019 – 2020 sở Giáo dục và Đào tạo tỉnh Bình Phước, đề thi có mã đề 311 gồm 03 trang với 20 câu trắc nghiệm và 05 câu tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán lớp 11 năm học 2019 – 2020 sở GD&ĐT Bình Phước : + Chọn khẳng định sai trong các khẳng định sau? A. Hai mặt phẳng có một điểm chung thì chúng có vô số điểm chung khác nữa. B. Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất. C. Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất. D. Nếu ba điểm phân biệt A, B, C cùng thuộc hai mặt phẳng phân biệt thì chúng thẳng hàng. + Chọn khẳng định sai trong các khẳng định sau ? A. Phép vị tự biến ba điểm hàng thành ba điểm thẳng hàng và bảo toàn thứ tự giữa các điểm ấy. B. Phép dời hình biến đường tròn thành đường tròn có cùng bán kính. C. Phép quay biến đường thẳng thành đường thẳng song song hoặc trùng với nó. D. Phép tịnh tiến bảo toàn khoảng cách giữa hai điểm bất kì. [ads] + Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành. Gọi G là trọng tâm của tam giác SBC. Lấy điểm M thuộc cạnh CD sao cho CM = 2MD. a. Xác định giao tuyến d của hai mặt phẳng (SBC) và (SAD). b. Chứng minh rằng GM // (SBD). + Bạn Minh muốn mua một cây bút mực và một cây bút chì. Có 9 cây bút mực khác nhau, có 10 cây bút chì khác nhau. Hỏi có bao nhiêu cách chọn? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I là trung điểm AO. Thiết diện của hình chóp cắt bởi mặt phẳng (P) qua I song song SA và BD là? A. Tam giác. B. Hình chữ nhật. C. Hình thang. D. Hình ngũ giác.

Nguồn: sytu.vn

Đọc Sách

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn
Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.