Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương trình quy về phương trình bậc hai

Tài liệu gồm 39 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề phương trình quy về phương trình bậc hai, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 4 bài số 7. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Phương trình trùng phương. 2. Phương trình chứa ẩn ở mẫu thức. 3. Phương trình đưa về dạng tích. 4. Một số dạng khác của phương trình thường gặp. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Giải phương trình trùng phương. Xét phương trình trùng phương: ax^4 + bx2 + c = 0 (a ≠ 0). + Bước 1. Đặt t = x^2 (t ≥ 0) ta được phương trình bậc hai: at^2 + bt + c = 0 (a ≠ 0). + Bước 2. Giải phương trình bậc hai ẩn t từ đó ta tìm được các nghiệm của phương trình trùng phương đã cho. Dạng 2 . Phương trình chứa ẩn ở mẫu thức. Để giải phương trình chứa ẩn ở mẫu thức, ta có các bước giải như sau: + Bước 1. Tìm điều kiện xác định của ẩn. + Bước 2. Quy đồng mẫu thức hai vế rồi khử mẫu. + Bước 3. Giải phương trình bậc hai nhận được ở bước 2. + Bước 4. So sánh các nghiệm tìm được ở bước 3 với điều kiện xác định và kết luận. Dạng 3 . Phương trình đưa về dạng tích. Để giải phương trình đưa về dạng tích, ta có các bước giải như sau: + Bước 1. Chuyển vế và phân tích vế trái thành nhân tử, vế phải bằng 0. + Bước 2. Xét từng nhân tử bằng 0 để tìm nghiệm. Dạng 4 . Giải phương trình bằng phương pháp đặt ẩn phụ. + Bước 1. Đặt điều kiện xác định (nếu có). + Bước 2. Đặt ẩn phụ, đặt điều kiện của ẩn phụ (nếu có) và giải phương trình theo ẩn mới. + Bước 3. Tìm nghiệm ban đầu và so sánh với điều kiện xác định và kết luận. Dạng 5 . Phương trình chứa biểu thức trong dấu căn. Làm mất dấu căn bằng cách đặt ẩn phụ hoặc lũy thừa hai vế. Dạng 6 . Một số dạng khác. Ngoài các phương pháp trên, ta còn dùng các phương pháp hằng đẳng thức, thêm bớt hạng tử, hoặc đánh giá hai vế … để giải phương trình. III. BÀI TẬP VỂ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO

Nguồn: toanmath.com

Đọc Sách

Bài giảng căn bậc hai, căn bậc ba - Nguyễn Tài Chung
Tài liệu gồm 37 trang, được biên soạn bởi thầy giáo Nguyễn Tài Chung, gồm tóm tắt lý thuyết và bài tập chọn lọc chuyên đề căn bậc hai, căn bậc ba, giúp học sinh học tốt chương trình Toán 9. 1 Căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 2 Căn bậc hai và đẳng thức √A2 = |A|. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 3 Liên hệ giữa phép nhân và phép khai phương. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 4 Liên hệ giữa phép chia và phép khai phương. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. [ads] 5 Bảng căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. 6 Biến đổi đơn giản biểu thức chứa căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 7 Rút gọn biểu thức chứa căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 8 Căn bậc ba. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. Ôn tập chương I. A Đề bài. B Lời giải.
Chuyên đề căn bậc hai và căn bậc ba - Bùi Đức Phương
Tài liệu gồm 40 trang, được biên soạn bởi thầy giáo Bùi Đức Phương, tổng hợp kiến thức và hướng dẫn phương pháp giải một số dạng toán quan trọng thuộc các chủ đề: căn bậc hai và căn bậc ba, trong chương trình môn Toán lớp 9. Bài 1 . Căn bậc hai. Dạng 1 . Tìm căn bậc hai của một số. Phương pháp giải: bám sát vào định nghĩa và tính chất của căn bậc hai. Dạng 2 . So sánh biểu thức không sử dụng máy tính. Phương pháp giải: sử dụng các tính chất của căn bậc hai. Dạng 3 . Biểu diễn hình học căn thức sử dụng thước kẻ và compa. Phương pháp giải: sử dụng các tính chất về dựng hình, đặc biệt là dựng hình vuông, tam giác vuông cho biết độ dài. Bài 2 . Căn thức bậc hai. Dạng 4 . Tìm điều kiện xác định của căn bậc hai. Phương pháp giải: + Một biểu thức a = √f(x) xác định (hay có nghĩa) khi và chỉ khi f(x) ≥ 0. + Một biểu thức b = 1/√f(x) xác định (hay có nghĩa) khi và chỉ khi f(x) > 0. Dạng 5 . Rút gọn các căn thức đơn giản. Phương pháp giải: sử dụng các tính chất của căn bậc hai. [ads] Bài 3 . Liên hệ giữa phép nhân, phép chia & phép khai phương. Dạng 6 . Áp dụng phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Phương pháp giải: sử dụng các tính chất phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Bài 4 . Biến đổi biểu thức chứa căn thức bậc hai. Dạng 7 . Các dạng bài tập biến đổi cơ bản biểu thức chứa căn thức bậc hai. Phương pháp giải: sử dụng các tính chất phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Dạng 8 . Biến đổi biểu thức chứa căn bậc hai. Phương pháp giải: sử dụng các tính chất phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Bài 5 . Căn bậc ba. Dạng 9 . Các dạng bài tập liên quan căn bậc ba. Phương pháp giải: áp dụng định nghĩa và các tính chất của căn bậc ba. Ôn tập chương I
Giải bài toán bằng cách lập phương trình, hệ phương trình - Phạm Huy Huân
Tài liệu gồm 29 trang được biên soạn bởi thầy giáo Phạm Huy Huân, hướng dẫn giải bài toán bằng cách lập phương trình, hệ phương trình; giúp học sinh học tốt chương trình Toán 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. Khái quát nội dung tài liệu giải bài toán bằng cách lập phương trình, hệ phương trình – Phạm Huy Huân: A. Các bước giải bài toán bằng cách lập phương trình Bước 1: Lập hệ phương trình. + Chọn các ẩn số và đặt điều kiện, đơn vị thích hợp cho các ẩn. + Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết. + Lập phương trình biểu thị sự tương quan giữa các đại lượng. Bước 2: Giải phương trình (hệ phương trình) vừa tìm được. Bước 3: Đối chiếu điều kiện và trả lời. [ads] B. Các dạng toán điển hình Dạng 1: Bài toán về quan hệ giữa các số. Dạng 2: Bài toán chuyển động. + Toán chuyển động không có sự tham gia của dòng nước. + Toán chuyển động có sự tham gia của dòng nước. Dạng 3: Toán về năng suất – Khối lượng công việc. Dạng 4: Toán về phần trăm (%). Dạng 5: Bài toán về công việc làm chung làm riêng. Dạng 6: Bài toán liên quan đến hình học. Dạng 7: Toán liên hệ thực tế.
Giải toán bằng cách lập phương trình - hệ phương trình
Tài liệu gồm 20 trang, hướng dẫn phương pháp giải toán bằng cách lập phương trình – hệ phương trình, giúp học sinh học tốt chương trình Toán 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. Khái quát nội dung tài liệu giải toán bằng cách lập phương trình – hệ phương trình: Để giải bài toán bằng cách lập phương trình, hệ phương trình ta thường thực hiện theo các bước sau: + Bước 1: Chọn ẩn số (nêu đơn vị của ẩn và đặt điều kiện nếu cần). + Bước 2: Tính các đại lượng trong bài toán theo giả thiết và ẩn số, từ đó lập phương trình hoặc hệ phương trình. + Bước 3: Giải phương trình hoặc hệ phương trình vừa lập. + Bước 4: Đối chiếu với điều kiện và trả lời. [ads] CÁC BÀI TOÁN CHUYỂN ĐỘNG + Quãng đường = Vận tốc . Thời gian. + Vận tốc tỷ lệ nghịch với thời gian và tỷ lệ thuận với quãng đường đi được. + Nếu hai xe đi ngược chiều nhau khi gặp nhau lần đầu: Thời gian hai xe đi được là như nhau. Tổng quãng đường 2 xe đi được bằng đúng quãng đường cần đi của 2 xe. + Nếu hai phương tiện chuyển động cùng chiều từ hai địa điểm khác nhau là A và B, xe từ A chuyển động nhanh hơn xe từ B thì khi xe từ A đuổi kịp xe từ B ta luôn có hiệu quãng đường đi được của xe từ A với quãng đường đi được của xe từ B bằng quãng đường AB. + Đối với Ca nô, tàu xuồng chuyển động trên dòng nước: Ta cần chú ý: Khi đi xuôi dòng: Vận tốc ca nô = Vận tốc riêng + Vận tốc dòng nước. Khi đi ngược dòng: Vận tốc ca nô = Vận tốc riêng – Vận tốc dòng nước. Vận tốc của dòng nước là vận tốc của một vật trôi tự nhiên theo dòng nước (vận tốc riêng của vật đó bằng 0). BÀI TOÁN LIÊN QUAN ĐẾN NĂNG SUẤT LAO ĐỘNG – CÔNG VIỆC Ta cần chú ý: Khi giải các bài toán liên quan đến năng suất thì liên hệ giữa ba đại lượng là: Khối lượng công việc = năng suất lao động × thời gian.