Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT Thạch Hà Hà Tĩnh

Nội dung Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT Thạch Hà Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT Thạch Hà Hà Tĩnh Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT Thạch Hà Hà Tĩnh Chào mừng quý thầy cô và các bạn học sinh lớp 9! Sytu xin giới thiệu đến các bạn đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thạch Hà, tỉnh Hà Tĩnh. Kỳ thi sẽ diễn ra vào ngày 28 tháng 04 năm 2022. Đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Thạch Hà – Hà Tĩnh bao gồm các câu hỏi sau: 1. Tổ chức tham quan, ngoại khóa cho học sinh giỏi với giá vé ban đầu mỗi người là 375,000 đồng. Sau khi giảm giá 10% cho giáo viên và 30% cho học sinh, tổng chi phí chuyến đi là 12,487,500 đồng. Hỏi có bao nhiêu học sinh và giáo viên tham gia chuyến đi biết số học sinh gấp 4 lần số giáo viên? 2. Trong tam giác vuông MNP tại M, đường cao MH, biết HN = 4cm và HP = 16cm. Tính độ dài MN, MH và đường tròn ngoại tiếp tam giác MNP. 3. Cho đường tròn tâm O, điểm ngoài đường tròn A. Kẻ đường thẳng qua A cắt đường tròn tại M và N (M nằm giữa A và N). Kẻ đường thẳng khác qua A, cắt đường tròn tại C và D (C nằm giữa A và D, C khác M). Chứng minh tứ giác ABCM là tứ giác nội tiếp đường tròn và DE vuông góc với AN.

Hy vọng đề thi thử này sẽ giúp các bạn ôn tập tốt và tự tin hơn cho kỳ thi tuyển sinh sắp tới. Chúc các bạn thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nghệ An; kỳ thi được diễn ra vào thứ Ba ngày 06 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Nghệ An : + Một cửa hàng kinh doanh xe đạp nhập về một lô hàng gồm hai loại: loại I có giá 2 triệu đồng/xe và loại II có giá 6 triệu đồng/xe. Biết rằng lô hàng nói trên có 50 xe với tổng số tiền mà cửa hàng phải thanh toán là 160 triệu đồng. Hỏi cửa hàng đã nhập về bao nhiêu xe loại I và bao nhiêu xe loại II? + Bạn An bỏ một viên bi đặc không thấm nước vào một lọ thủy tinh chứa nước dạng hình trụ có bán kính đường tròn đáy bằng 1,5 cm. Biết rằng khi viên bi chìm hoàn toàn trong nước thì nước trong lọ dâng lên thêm 0,5 cm. Tính thể tích viên bi bạn An đã bỏ vào lọ thủy tinh (cho pi = 3,14; xem độ dày của lọ không đáng kể và nước trong lọ không thất thoát ra ngoài). + Cho tam giác nhọn ABC (AB < AC), các đường cao AD, BE, CF (D thuộc BC, E thuộc AC, F thuộc AB) cắt nhau tại H. a) Chứng minh AEHF là tứ giác nội tiếp. b) Gọi O là trung điểm của đoạn thẳng BC, M là giao điểm của tia EF và tia CB. Chứng minh rằng FAD = OFC và OC2 = OD.OM. c) Chứng minh rằng hai đường thẳng MH và AO vuông góc với nhau.
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 - 2024 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào 06/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho parabol (P): y = -x2 và đường thẳng (d): y = 3x – m (với m là tham số). a) Vẽ parabol (P). b) Tìm tất cả các giá trị của tham số m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn 5(x1 + x2) = 1 – (x1x2)2. + Ông A có một mảnh đất hình chữ nhật, chiều dài hơn chiều rộng 15m. Ông A quyết định bán đi một phần mảnh đất đó. Mảnh đất còn lại sau khi bán vẫn là hình chữ nhật, nhưng so với lúc đầu thì chiều rộng đã giảm 5m, chiều dài không đổi và diện tích là 300m2. Tính chiều dài và chiều rộng của mảnh đất lúc đầu. + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O)(AB < AC).Các đường cao BD, CE cắt nhau tại H. a) Chứng minh tứ giác ADHE nội tiếp. b) Đường thẳng ED cắt tiếp tuyến tại C của đường tròn (O) tại K và cắt đường tròn (O) tại M, N (M nằm giữa D và K). So sánh KNC với KCM và chứng minh KC2 = KM.KN. c) Kẻ đường kính AQ của đường tròn (O) cắt MN tại P. Chứng minh QM = QN. d) Gọi F, I lần lượt là giao điểm của hai tia AH, HQ với BC. Chứng minh SHDE/SABC = DE2/3BC2.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Hai ngày 05 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Khánh Hòa : + Hưởng ứng phong trào “Ngày chủ nhật xanh” do Tỉnh đoàn phát động. Trường THCS X chọn 15 học sinh chia thành hai tổ tham gia trồng cây. Tổ I trồng được 30 cây, tổ II trồng được 36 cây. Biết rằng mỗi học sinh ở tổ I trồng được nhiều hơn mỗi học sinh ở tổ II là 1 cây. Hỏi mỗi tổ có bao nhiêu học sinh? + Gạch xây 3 lỗ (như hình vẽ) được làm bằng đất nung, thường được sử dụng trong các công trình có dạng hình hộp chữ nhật với chiều dài 220 mm, chiều rộng 105 mm, chiều cao 60 mm. Mỗi lỗ là hình trụ có trục song song với chiều cao viên gạch, đường kính đáy là 14 mm. Tính thể tích phần đất nung của một viên gạch. Biết V = abc 2 V r h lần lượt là công thức tính thể tích hình hộp chữ nhật và hình trụ (trong đó a, b, c là ba kích thước của hình hộp chữ nhật, r là bán kính đường tròn đáy, h là chiều cao hình trụ, lấy pi = 3,14). + Cho đường tròn (O) đường kính AB và điểm C thuộc đường tròn sao cho AC < BC (C khác A). Vẽ CH vuông góc với AB (H AB). a) Chứng minh ABC là tam giác vuông. Tính AC biết AB = 4cm, AH = 1cm. b) Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Vẽ DE vuông góc với AB (E AB). Chứng minh BECD là tứ giác nội tiếp. c) Gọi I là giao điểm của DE và BC, K là điểm đối xứng của I qua C, tiếp tuyến của (O) tại C cắt KA tại M. Chứng minh KA là tiếp tuyến của (O) và BM đi qua trung điểm của CH.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào thứ Ba ngày 06 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Bình Định : + Trong hệ toạ độ Oxy, cho các đường thẳng (d): y = ax – 4 và (d1): y = -3x + 2. a) Biết đường thẳng (d) đi qua điểm A(-1;5). Tìm a. b) Tìm toạ độ giao điểm của (d1) với trục hoành, trục tung. Tính khoảng cách từ gốc tọa độ O đến đường thẳng (d1). + Trong kì thi tuyển sinh vào lớp 10 THPT, cả hai trường A và B có tổng số 380 thí sinh dự thi. Sau khi có kết quả, số thí sinh trúng tuyển của cả hai trường là 191 thí sinh. Theo thống kê thì trường A có tỉ lệ trúng tuyển là 55% tổng số thí sinh dự thi của trường A, trường B có tỉ lệ trúng tuyển là 45% tổng số thí sinh dự thi của trường B. Hỏi mỗi trường có bao nhiêu thí sinh dự thi? + Cho tam giác nhọn ABC nội tiếp đường tròn (O) có AB < AC, các đường cao BE, CF của tam giác ABC cắt nhau tại H, đường thẳng EF cắt đường thẳng BC tại K. 1. Chứng minh tứ giác BCEF nội tiếp. 2. Chứng minh hai tam giác KBF và KEC đồng dạng, từ đó suy ra KB.KC = KF.KE. 3. Đường thẳng AK cắt lại đường tròn (O) tại G khác A, chứng minh các điểm A, G, F, E, H cùng thuộc một đường tròn.