Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 11 môn Toán đầu năm 2023 2024 trường THPT Thuận Thành 1 Bắc Ninh

Nội dung Đề khảo sát lớp 11 môn Toán đầu năm 2023 2024 trường THPT Thuận Thành 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng môn Toán lớp 11 đầu năm học 2023 – 2024 trường THPT Thuận Thành số 1, tỉnh Bắc Ninh; đề thi gồm 06 trang, cấu trúc 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án mã đề 101. Trích dẫn Đề khảo sát Toán lớp 11 đầu năm 2023 – 2024 trường THPT Thuận Thành 1 – Bắc Ninh : + Nhà của ba bạn A B C nằm ở ba vị trí tạo thành một tam giác vuông tại B (như hình vẽ). Biết AB km BC km 10 47 và ba bạn tổ chức họp mặt ở nhà bạn C. Bạn B hẹn chở bạn A tại vị trí M trên đoạn đường BC. Từ nhà, bạn A đi xe buýt đến điểm hẹn M với vận tốc 25 km h và từ M hai bạn AB di chuyển đến nhà bạn C bằng xe máy với vận tốc 50 km h. Biết thời gian bạn A đến nhà bạn C là 1 giờ 30 phút. Hỏi khoảng cách từ M đến nhà bạn B (tính bằng km) nằm trong khoảng nào dưới đây? + Hai chiếc thuyền A và B ở vị trí được minh họa như hình dưới đây. Từ điểm K trên mặt đất người ta nhìn thấy hai chiếc thuyền A và B theo hai phương tạo với nhau một góc 0 15. Từ điểm K người ta nhìn thấy chiếc thuyền A theo phương tạo với phương nằm ngang một góc 0 50. Gọi I là hình chiếu của K trên đường thẳng AB. Biết khoảng cách từ K đến I bằng 380m. Khoảng cách giữa A và B bằng bao nhiêu mét (làm tròn đến hàng đơn vị)? + Một người nông dân có 15000000 đồng để làm một cái hàng rào hình chữ E dọc theo một con sông (như hình vẽ). Bên trong hàng rào là hai mảnh đất hình chữ nhật dùng để trồng rau. Đối với mặt hàng rào song song với bờ sông thì chi phí nguyên vật liệu là 60000 đồng một mét, còn đối với ba mặt hàng rào song song nhau thì chi phí nguyên vật liệu là 50000 đồng một mét. Diện tích lớn nhất của mảnh đất mà người nông dân đó rào được là?

Nguồn: sytu.vn

Đọc Sách

Đề Olympic 30 tháng 4 Toán 11 năm 2021 trường chuyên Lê Hồng Phong - TP HCM
Thứ Bảy ngày 03 tháng 04 năm 2021, trường THPT chuyên Lê Hồng Phong, quận 5, thành phố Hồ Chí Minh tổ chức kỳ thi Olympic truyền thống 30 tháng 4 môn Toán lớp 11 lần thứ XXVI (26) năm 2021. Đề Olympic 30 tháng 4 Toán 11 năm 2021 trường chuyên Lê Hồng Phong – TP HCM được biên soạn theo hình thức tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề Olympic 30 tháng 4 Toán 11 năm 2021 trường chuyên Lê Hồng Phong – TP HCM : + Với mỗi “bộ số đẹp” x, y ta có thể tạo ra 1 “bộ số đẹp” mới bởi 1 trong 2 phép biến đổi: hoặc đổi dấu của 1 trong 2 số hoặc cộng 1 số nguyên k nào đó vào cả 2 số sao cho x k y k là “bộ số đẹp”. Chứng minh rằng với bất kỳ 2 bộ số đẹp x, y và z, t cho trước ta luôn có thể biến đổi từ x, y thành z, t sau hữu hạn các bước biến đổi như trên. + Cho tam giác nhọn không cân ABC nội tiếp đường tròn O. Gọi A B C là chân đường cao hạ từ các đỉnh A B C. Một đường tròn qua B C tiếp xúc với cung nhỏ BC của O tại 1 A. Các điểm 1 1 B C xác định tương tự. a. Chứng minh rằng 1 1 cot cot A B B A C C. b. Vẽ các hình bình hành 1 1 B ABX C ACY. Chứng minh rằng các điểm 1 X Y A và A0 thuộc một đường tròn với AA0 là đường kính của O. c. Vẽ các hình bình hành 1 2 1 2 1 2 BACA CB AB AC BC. Chứng minh rằng đường tròn ngoại tiếp tam giác A B C 2 2 2 đi qua trực tâm của tam giác ABC. + Bộ hai số nguyên khác không x, y được gọi là “bộ số đẹp” nếu x là số lẻ, y là số chẵn x, y nguyên tố cùng nhau và 2 2 x y là số chính phương.
Đề Olympic tháng 4 Toán 11 năm 2020 - 2021 sở GDĐT TP Hồ Chí Minh
Sáng thứ Bảy ngày 17 tháng 04 năm 2021, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi Olympic tháng 4 cấp THPT mở rộng môn Toán lớp 11 năm học 2020 – 2021. Đề Olympic tháng 4 Toán 11 năm 2020 – 2021 sở GD&ĐT TP Hồ Chí Minh gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút.
Đề học sinh giỏi cấp tỉnh Toán 11 chuyên năm 2020 - 2021 sở GDĐT Lạng Sơn
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 11 chuyên năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Lạng Sơn; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thang điểm 20, thời gian học sinh làm bài thi là 180 phút (không kể thời gian giáo viên coi thi phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề Olympic Toán 11 năm 2020 - 2021 liên cụm trường THPT - Hà Nội
Thứ Bảy ngày 20 tháng 03 năm 2021, liên cụm trường THPT: Thanh Xuân – Cầu Giấy – Mê Linh – Sóc Sơn – Đông Anh (thành phố Hà Nội) tổ chức kỳ thi Olympic Toán 11 năm học 2020 – 2021. Đề Olympic Toán 11 năm 2020 – 2021 liên cụm trường THPT – Hà Nội được biên soạn theo dạng đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề Olympic Toán 11 năm 2020 – 2021 liên cụm trường THPT – Hà Nội : + Cho tam giác ABC cân tại A. Gọi AH là đường cao xuất phát từ đỉnh A. Biết độ dài các đoạn thẳng BC, AH, AB theo thứ tự tạo thành một cấp số nhân. Tìm công bội của cấp số nhân đó. + Trong hộp có 25 tấm thẻ giống nhau được đánh số theo thứ tự từ 1 đến 25. Rút ngẫu nhiên ba tấm thẻ từ trong hộp. 1) Có bao nhiêu cách để rút được ít nhất hai tấm thẻ mang số lẻ? 2) Tính xác suất để trong ba số ghi trên ba tấm thẻ rút được không có hai số nào là hai số tự nhiên liên tiếp. +  Gọi là mặt phẳng thay đổi và luôn đi qua trung điểm Q của đoạn thẳng AG. Mặt phẳng cắt các tia lần lượt tại các điểm M, N, P (không trùng với điểm A).  Tìm giá trị lớn nhất của biểu thức T.