Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo giữa học kì 1 (HK1) lớp 9 môn Toán năm 2023 2024 trường THCS Lương Thế Vinh TP HCM

Nội dung Đề tham khảo giữa học kì 1 (HK1) lớp 9 môn Toán năm 2023 2024 trường THCS Lương Thế Vinh TP HCM Bản PDF Đề tham khảo giữa học kì 1 (HK1) lớp 9 môn Toán năm 2023-2024 trường THCS Lương Thế Vinh TP HCM đã được Sytu giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9. Đề thi bao gồm nhiều câu hỏi khó, đòi hỏi sự tỉ mỉ và logic trong từng bước giải.

Một trong các câu hỏi được đề cập trong đề tham khảo là về tứ giác AMHN là hình chữ nhật trong tam giác ABC vuông ở A. Với thông tin HM = 9 cm và AH = 15 cm, học sinh cần chứng minh tứ giác AMHN là hình chữ nhật và tính toán các đại lượng còn thiếu.

Ngoài ra, đề còn đưa ra câu hỏi liên quan đến tòa nhà chọc trời Landmark 81, với thông tin về chiều cao và góc quan sát. Học sinh cần tính toán chiều cao của tòa nhà dựa trên các thông số đưa ra.

Cuối cùng, đề còn bao gồm câu hỏi về việc tính toán số tiền điện và nước phải trả trong gia đình ông Khánh, thông qua việc thay đổi hệ thống đèn chiếu sáng.

Tổng thể, đề tham khảo giữa học kì 1 môn Toán lớp 9 năm 2023-2024 trường THCS Lương Thế Vinh TP HCM là một bài thi đa dạng, đòi hỏi học sinh phải áp dụng kiến thức và logic để giải quyết các bài toán phức tạp. Đây là cơ hội tốt để học sinh rèn luyện kỹ năng giải toán và chuẩn bị tốt cho kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Đan Phượng - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, phòng GD&ĐT huyện Đan Phượng, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Đan Phượng – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Đan Phượng – Hà Nội : + Cho hai biểu thức với x > 0 và x ≠ 4. a) Tính giá trị của A khi x = 25. b) Rút gọn biểu thức B. c) Tìm các giá trị nguyên của x để biểu thức P AB có giá trị nguyên. + Cho tam giác ABC vuông tại A, đường cao AH H BC. a) Biết AB cm BC cm 12 20. Tính AC AH và ABC (làm tròn đến độ). b) Kẻ HM vuông góc với AB tại M HN vuông góc với AC tại N. Chứng minh: 2 2 AN AC AC HC. c) Chứng minh: AH MN và 2 AM MB AN NC AH. d) Chứng minh: 3 tan BM C CN. + Cho a b là các số thực dương thỏa mãn điều kiện a b 1 1 4. Tìm giá trị nhỏ nhất của biểu thức 2 2.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Ba Đình - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Ba Đình, quận Ba Đình, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Ba Đình – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Ba Đình – Hà Nội : + Cho biểu thức: a)Tính giá trị biểu thức B khi x = 36. b) Tìm x để 1 2 B. c) Rút gọn biểu thức A. d) Tìm giá trị x nguyên nhỏ nhất để biểu thức P AB nguyên. + Một chiếc máy bay cất cánh theo một góc 25o so với phương ngang. Hỏi muốn đạt độ cao 2000m thì máy bay phải bay một đoạn đường là bao nhiêu mét? (làm tròn kết quả đến chữ số thập phân thứ nhất). + Cho tam giác ABC vuông tại A, đường cao AH. a) Biết AB 4 cm AC 4 3 cm. Giải tam giác ABC. b) Kẻ HD HE lần lượt vuông góc với AB AC (D thuộc AB, E thuộc AC). Chứng minh 2 BD DA CE EA AH. c) Lấy điểm M nằm giữa E và C, kẻ AI vuông góc với MB tại I. Chứng minh sin sin HI AMB ACB CM.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Cầu Giấy - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Cầu Giấy – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Cầu Giấy – Hà Nội : + Một cột đèn có bóng trên mặt đất dài 8,5m. Các tia nắng mặt trời tạo với mặt đất một góc xấp xỉ 38°. Tính chiều cao của cột đèn? (Kết quả làm tròn đến một chữ số thập phân). + Cho ∆ABC nhọn có ABC = 60, đường cao AH. Đường thẳng qua C vuông góc với AC cắt đường thẳng AH tại D. Gọi E và F lần lượt là hình chiếu của H trên AC và CD. a) Nếu AH = 3cm, AC = 5cm. Tính độ dài các đoạn thẳng HC, HD, CD? b) Chứng minh rằng CF CD CE CA. c) Biết AB BC 8cm, tìm giá trị lớn nhất của diện tích tam giác ABC. + Cho abc là các số thực dương thỏa mãn: ab bc ca abc. Tìm giá trị lớn nhất của biểu thức.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Đống Đa - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Đống Đa, quận Đống Đa, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Đống Đa – Hà Nội được biên soạn theo hình thức đề 10% trắc nghiệm + 90% tự luận (theo điểm số), thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Đống Đa – Hà Nội : + Một cái thang dài 3,5m đặt dựa vào tường, góc “an toàn” giữa thang và mặt đất để thang không đổ khi người trèo lên là 65°. Khoảng cách “an toàn” từ chân tường đến chân thang (kết quả làm tròn đến chữ số thập phân thứ nhất) là? + Tam giác ABC vuông tại A, có đường cao AH chia cạnh huyền thành hai đoạn thẳng có độ dài 3,6cm và 6,4 cm. Độ dài một trong các cạnh góc vuông là? + Cho tam giác ABC nhọn, đường cao AK. a) Giải tam giác ACK biết C AK 30 3cm. b) Chứng minh cot cot BC AK B C. c) Biết BC B C 5cm 68 30. Tính diện tích tam giác ABC (kết quả làm tròn chữ số thập phân thứ nhất). d) Vẽ hình chữ nhật CKAD DB cắt AK tại N. Chứng minh rằng?