Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 11 năm 2023 - 2024 trường THPT Triệu Sơn 2 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng theo định hướng thi tốt nghiệp THPT môn Toán 11 năm học 2023 – 2024 trường THPT Triệu Sơn 2, tỉnh Thanh Hóa. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với nội dung gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng / sai; Câu trắc nghiệm trả lời ngắn. Kỳ thi được diễn ra vào ngày 29 tháng 01 năm 2024. Đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 11 năm 2023 – 2024 trường THPT Triệu Sơn 2 – Thanh Hóa : + Thang đo Richter được Charles Francis Richter đề xuất và sử dụng lần đầu tiên vào năm 1935 để sắp xếp các số đo độ chấn động của các cơn động đất với đơn vị là độ Richter. Cường độ động đất M(Richter) được cho bởi công thức M = logA – logA0, với A là biên độ rung chấn tối đa và A0 là biên độ chuẩn (hằng số). Đầu thế kỷ 20, một trận động đất ở San Francisco có cường độ 8,3 độ Richter. Cũng trong cùng năm đó một trận động đất khác ở Nam Mỹ có cường độ 9,3 độ Richter. Hỏi trận động đất ở Nam Mỹ có biên độ gấp bao nhiêu lần biên độ trận động đất ở San Francisco. + Trong mặt phẳng (α) cho tam giác ABC vuông tại A 0 B 60 AB 3. Gọi O là trung điểm của BC. Lấy điểm S ở ngoài mặt phẳng (α) sao cho SB = 3 và SB OA. Gọi M là một điểm trên cạnh AB, mặt phẳng (α) qua M song song với SB và OA, cắt BC SC SA lần lượt tại N PQ. Đặt BM x (0 3). Tìm x để diện tích thiết diện của hình chóp và mặt phẳng (α) là lớn nhất. + Bác Việt sống và làm việc tại trạm hải đăng cách bờ biển 4 km. Hàng tuần, bác chèo thuyền vào vị trí gần nhất trên bờ biển là bến Bính để nhận hàng hóa do cơ quan cung cấp. Tuần này, do trục trặc về vận chuyển nên toàn bộ số hàng vẫn đang nằm ở thôn Hoành, bên bờ biển cách bến Bính 9,25 km và sẽ được anh Nam vận chuyển trên con đường dọc bờ biển tới bến Bính bằng xe kéo. Bác Việt đã gọi điện thống nhất với anh Nam là họ sẽ gặp nhau ở vị trí nào đó giữa bến Bính và thôn Hoành để hai người có mặt tại đó cùng lúc, không mất thời gian chờ nhau. Giả thiết rằng đường dọc bờ biển là thẳng và bác Việt cũng di chuyển theo một đường thẳng để tới điểm hẹn.Biết rằng vận tốc của anh Nam là 5 km/h và của bác Việt là 4 km/h. Vị trí hai người hẹn gặp cách thôn Hoành bao nhiêu km?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra chất lượng Toán 11 lần 2 năm 2019 - 2020 trường THPT Lý Thái Tổ - Bắc Ninh
Thứ Bảy ngày 30 tháng 06 năm 2020, trường THPT Lý Thái Tổ, thị xã Từ Sơn, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng môn Toán đối với học sinh lớp 11 lần thứ hai năm học 2019 – 2020. Đề kiểm tra chất lượng Toán 11 lần 2 năm 2019 – 2020 trường THPT Lý Thái Tổ – Bắc Ninh gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 132, 209, 357, 485, 570, 628, 743, 896. Trích dẫn đề kiểm tra chất lượng Toán 11 lần 2 năm 2019 – 2020 trường THPT Lý Thái Tổ – Bắc Ninh : + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, với AB = 2a, AD = CD = a. Cạnh bên SA vuông góc với đáy và SA = 2a. Gọi M là điểm thuộc cạnh AB sao cho AB = 4AM và (x) là mặt phẳng đi qua M, vuông góc với cạnh CD. Tính diện tích thiết diện của hình chóp S.ABCD với mặt phẳng (x). [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, biết AB = 2a, AD = a, SA = 3a và SA vuông góc với mặt phẳng đáy. Gọi M là trung điểm của CD, điểm E thuộc cạnh SA sao cho SE = 2a. Cosin góc giữa hai mặt phẳng (SAC) và (BME). + Cho hàm số f(x) có đạo hàm trên R và có đồ thị như hình vẽ. Biết rằng tại các điểm A, B, C đồ thị hàm số có tiếp tuyến được thể hiện như trong hình. Chọn khẳng định đúng trong các khẳng định sau?
Đề chọn lớp chất lượng cao Toán 11 năm 2020 - 2021 trường Yên Phong 2 - Bắc Ninh
Nhằm tuyển chọn những em học sinh lớp 11 giỏi môn Toán vào học tại các lớp chất lượng cao trong năm học tới, thứ Bảy ngày 04 tháng 07 năm 2020, trường Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi chọn lớp chất lượng cao Toán 11 năm học 2020 – 2021. Đề chọn lớp chất lượng cao Toán 11 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh gồm có 02 trang với 08 câu trắc nghiệm và 04 câu tự luận, phần trắc nghiệm chiếm 02 điểm, phần tự luận chiếm 08 điểm, thời gian làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề chọn lớp chất lượng cao Toán 11 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh : + Cho hình lăng trụ đứng ABC.A′B′C′. Khẳng định nào sau đây đúng? A. Mỗi mặt đáy của hình lăng trụ ABC.A′B′C′ là một tam giác đều. B. Mỗi mặt bên của hình lăng trụ ABC.A′B′C′ là một hình chữ nhật. C. Các cạnh đáy của hình lăng trụ ABC.A′B′C′ song song và bằng nhau. D. Hai cạnh bên của hình lăng trụ ABC.A′B′C′ vuông góc với nhau. + Có 20 học sinh, trong đó có một bạn tên là Thái và một bạn tên là Bình. Có 20 ghế được kê thành 4 dãy ngang, mỗi dãy gồm 5 ghế. Xếp 20 bạn học sinh đó ngồi vào 20 ghế đã cho, mỗi người ngồi một ghế. Tính xác suất để bạn Thái và bạn Bình luôn ngồi cùng dãy với nhau. [ads] + Xét hai phát biểu sau đây: (1) Nếu một cấp số nhân có công bội q = 1 thì mọi số hạng của nó bằng nhau. (2) Nếu một cấp số nhân có mọi số hạng bằng nhau thì nó có công bội q = 1. Khẳng định nào sau đây đúng? A. Chỉ (1) đúng. C. Chỉ (2) đúng. B. Cả (1) và (2) đều đúng. D. Cả (1) và (2) đều sai.
Đề khảo sát học kỳ 2 Toán 11 năm 2019 - 2020 trường THPT Liễn Sơn - Vĩnh Phúc
Đề khảo sát học kỳ 2 Toán 11 năm 2019 – 2020 trường THPT Liễn Sơn – Vĩnh Phúc gồm 02 trang với 12 câu trắc nghiệm và 06 câu tự luận, phần trắc nghiệm chiếm 3,0 điểm, phần tự luận chiếm 7,0 điểm, thời gian làm bài 90 phút. Trích dẫn đề khảo sát học kỳ 2 Toán 11 năm 2019 – 2020 trường THPT Liễn Sơn – Vĩnh Phúc : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Hai mặt phẳng (SAB), (SAD) cùng vuông góc với mặt đáy (ABCD) và SA = 2a. a. Chứng minh (SAC) vuông góc (SBD) b. Tính góc tạo bởi đường thẳng SC và mặt phẳng (ABCD). c. Gọi M là trung điểm của AD. Tính khoảng cách từ điểm O đến mặt phẳng (SMC). [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với (ABCD) và SA = AB. Gọi E và F lần lượt là trung điểm của BC và SC. Tính góc giữa đường thẳng EF và mặt phẳng (SAD). + Viết phương trình tiếp tuyến của đồ thị hàm số y = 2x^3 – 3x^2 + 7x – 15 biết tiếp tuyến song song với đường thẳng y = 7x – 15.
Đề khảo sát Toán 11 lần 3 năm 2019 - 2020 trường THPT Yên Lạc - Vĩnh Phúc
Ngày … tháng 06 năm 2020, trường THPT Yên Lạc, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 11 năm học 2019 – 2020 lần thi thứ ba. Đề khảo sát Toán 11 lần 3 năm 2019 – 2020 trường THPT Yên Lạc – Vĩnh Phúc gồm 50 câu trắc nghiệm khách quan, thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 501 và mã đề 507. Trích dẫn đề khảo sát Toán 11 lần 3 năm 2019 – 2020 trường THPT Yên Lạc – Vĩnh Phúc : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, đường thẳng AD là đường phân giác trong của góc A. Trên đoạn AD lấy hai điểm M, N (M, N khác A và D) sao cho góc ABN bằng góc CBM. Đường thẳng CM cắt đường tròn ngoại tiếp tam giác ABN tại F, biết phương trình của FA là x + y – 8 = 0 và M(-3;-1), B(-4;-2). Gọi tọa độ điểm A là A(a;b), biết đường tròn ngoại tiếp tam giác AMC đi qua điểm Q(0;√22). Khi đó tổng a + b là? [ads] + Cho hàm số f(x) = (√x – 2)/(x – 4) với x khác 4 và f(x) = 1/4 với x = 4. Khẳng định nào sau đây đúng: A. Hàm số gián đoạn tại x = 4. B. Hàm số không liên tục tại x = 4. C. Hàm số liên tục trên R. D. Hàm số liên tục tại x = 4. + Cho tứ diện đều ABCD có các cạnh bằng a. Gọi G và G’ lần lượt là trọng tâm của tam giác ABC và ABD. Diện tích của thiết diện của hình tứ diện khi cắt bởi mặt phẳng (BGG’) là?